Nuprl Lemma : quot_ring_car_elim_a
∀r:CRng. ∀a:Ideal(r){i}. ∀d:detach_fun(|r|;a).
  ((∀w:|r|. SqStable(a w)) 
⇒ (∀u,v:|r|.  (u = v ∈ |r / d| 
⇐⇒ a (u +r (-r v)))))
Proof
Definitions occuring in Statement : 
quot_ring: r / d
, 
ideal: Ideal(r){i}
, 
crng: CRng
, 
rng_minus: -r
, 
rng_plus: +r
, 
rng_car: |r|
, 
detach_fun: detach_fun(T;A)
, 
sq_stable: SqStable(P)
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
crng: CRng
, 
rng: Rng
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
ideal: Ideal(r){i}
, 
so_apply: x[s]
, 
quot_ring: r / d
, 
rng_car: |r|
, 
pi1: fst(t)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
detach_fun: detach_fun(T;A)
, 
infix_ap: x f y
Lemmas referenced : 
rng_car_wf, 
all_wf, 
sq_stable_wf, 
detach_fun_wf, 
ideal_wf, 
crng_wf, 
quot_ring_car_elim, 
equal_wf, 
quot_ring_car_wf, 
quot_ring_car_subtype, 
iff_wf, 
assert_wf, 
rng_plus_wf, 
rng_minus_wf, 
det_ideal_ap_elim
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
because_Cache, 
addLevel, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
independent_functionElimination, 
independent_isectElimination, 
dependent_functionElimination
Latex:
\mforall{}r:CRng.  \mforall{}a:Ideal(r)\{i\}.  \mforall{}d:detach\_fun(|r|;a).
    ((\mforall{}w:|r|.  SqStable(a  w))  {}\mRightarrow{}  (\mforall{}u,v:|r|.    (u  =  v  \mLeftarrow{}{}\mRightarrow{}  a  (u  +r  (-r  v)))))
Date html generated:
2017_10_01-AM-08_18_17
Last ObjectModification:
2017_02_28-PM-02_03_12
Theory : rings_1
Home
Index