Nuprl Lemma : quot_ring_car_elim_a

r:CRng. ∀a:Ideal(r){i}. ∀d:detach_fun(|r|;a).
  ((∀w:|r|. SqStable(a w))  (∀u,v:|r|.  (u v ∈ |r d| ⇐⇒ (u +r (-r v)))))


Proof




Definitions occuring in Statement :  quot_ring: d ideal: Ideal(r){i} crng: CRng rng_minus: -r rng_plus: +r rng_car: |r| detach_fun: detach_fun(T;A) sq_stable: SqStable(P) infix_ap: y all: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] crng: CRng rng: Rng prop: so_lambda: λ2x.t[x] ideal: Ideal(r){i} so_apply: x[s] quot_ring: d rng_car: |r| pi1: fst(t) iff: ⇐⇒ Q and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B rev_implies:  Q detach_fun: detach_fun(T;A) infix_ap: y
Lemmas referenced :  rng_car_wf all_wf sq_stable_wf detach_fun_wf ideal_wf crng_wf quot_ring_car_elim equal_wf quot_ring_car_wf quot_ring_car_subtype iff_wf assert_wf rng_plus_wf rng_minus_wf det_ideal_ap_elim
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality because_Cache addLevel productElimination independent_pairFormation impliesFunctionality independent_functionElimination independent_isectElimination dependent_functionElimination

Latex:
\mforall{}r:CRng.  \mforall{}a:Ideal(r)\{i\}.  \mforall{}d:detach\_fun(|r|;a).
    ((\mforall{}w:|r|.  SqStable(a  w))  {}\mRightarrow{}  (\mforall{}u,v:|r|.    (u  =  v  \mLeftarrow{}{}\mRightarrow{}  a  (u  +r  (-r  v)))))



Date html generated: 2017_10_01-AM-08_18_17
Last ObjectModification: 2017_02_28-PM-02_03_12

Theory : rings_1


Home Index