Nuprl Lemma : ringeq_int_terms_functionality
∀[r:Rng]. ∀[x1,x2,y1,y2:int_term()].  (uiff(x1 ≡ y1;x2 ≡ y2)) supposing (y1 ≡ y2 and x1 ≡ x2)
Proof
Definitions occuring in Statement : 
ringeq_int_terms: t1 ≡ t2
, 
rng: Rng
, 
int_term: int_term()
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
prop: ℙ
, 
rng: Rng
, 
all: ∀x:A. B[x]
, 
ringeq_int_terms: t1 ≡ t2
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
Lemmas referenced : 
rng_wf, 
int_term_wf, 
ringeq_int_terms_wf, 
rng_car_wf, 
iff_weakening_equal, 
ring_term_value_wf, 
true_wf, 
squash_wf, 
equal_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality, 
independent_pairEquality, 
productElimination, 
rename, 
setElimination, 
isectElimination, 
extract_by_obid, 
intEquality, 
functionEquality, 
axiomEquality, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
functionExtensionality, 
universeEquality, 
imageElimination, 
applyEquality
Latex:
\mforall{}[r:Rng].  \mforall{}[x1,x2,y1,y2:int\_term()].    (uiff(x1  \mequiv{}  y1;x2  \mequiv{}  y2))  supposing  (y1  \mequiv{}  y2  and  x1  \mequiv{}  x2)
Date html generated:
2018_05_21-PM-03_15_53
Last ObjectModification:
2018_01_25-PM-01_30_08
Theory : rings_1
Home
Index