Nuprl Lemma : rng_hom_minus

[r,s:Rng]. ∀[f:|r| ⟶ |s|].  ∀[x:|r|]. (f[-r x] (-s f[x]) ∈ |s|) supposing rng_hom_p(r;s;f)


Proof




Definitions occuring in Statement :  rng_hom_p: rng_hom_p(r;s;f) rng: Rng rng_minus: -r rng_car: |r| uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rng_hom_p: rng_hom_p(r;s;f) and: P ∧ Q rng: Rng prop: fun_thru_2op: FunThru2op(A;B;opa;opb;f) true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q implies:  Q so_apply: x[s] infix_ap: y rev_implies:  Q
Lemmas referenced :  rng_hom_zero rng_car_wf rng_hom_p_wf rng_wf rng_minus_wf infix_ap_wf rng_plus_wf equal_wf squash_wf true_wf rng_plus_comm rng_plus_inv iff_weakening_equal rng_plus_ac_1 rng_plus_zero
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination productElimination sqequalRule isect_memberEquality axiomEquality setElimination rename functionExtensionality applyEquality because_Cache functionEquality equalityTransitivity equalitySymmetry natural_numberEquality lambdaEquality imageElimination universeEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[r,s:Rng].  \mforall{}[f:|r|  {}\mrightarrow{}  |s|].    \mforall{}[x:|r|].  (f[-r  x]  =  (-s  f[x]))  supposing  rng\_hom\_p(r;s;f)



Date html generated: 2017_10_01-AM-08_18_23
Last ObjectModification: 2017_02_28-PM-02_03_17

Theory : rings_1


Home Index