Nuprl Lemma : module_over_triv_rng

A:Rng. ∀m:A-Module.  ((1 0 ∈ |A|)  (∀u:m.car. (u m.zero ∈ m.car)))


Proof




Definitions occuring in Statement :  module: A-Module alg_zero: a.zero alg_car: a.car all: x:A. B[x] implies:  Q equal: t ∈ T rng: Rng rng_one: 1 rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] rng: Rng module: A-Module prop: squash: T and: P ∧ Q true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q
Lemmas referenced :  alg_car_wf rng_car_wf equal_wf rng_one_wf rng_zero_wf module_wf rng_wf infix_ap_wf alg_act_wf squash_wf true_wf module_action_p module_act_zero_l iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination setElimination rename hypothesisEquality because_Cache applyLambdaEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality productElimination natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}A:Rng.  \mforall{}m:A-Module.    ((1  =  0)  {}\mRightarrow{}  (\mforall{}u:m.car.  (u  =  m.zero)))



Date html generated: 2017_10_01-AM-09_51_53
Last ObjectModification: 2017_03_03-PM-00_46_32

Theory : algebras_1


Home Index