Nuprl Lemma : mcomp_imp_not_unit

g:IAbMonoid. ∀a:|g|.  (Reducible(a)  (g-unit(a))))


Proof




Definitions occuring in Statement :  mreducible: Reducible(a) munit: g-unit(u) all: x:A. B[x] not: ¬A implies:  Q iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T prop: iabmonoid: IAbMonoid imon: IMonoid uall: [x:A]. B[x] mreducible: Reducible(a) exists: x:A. B[x] and: P ∧ Q munit: g-unit(u) mdivides: a uimplies: supposing a squash: T infix_ap: y true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q
Lemmas referenced :  munit_wf mreducible_wf grp_car_wf iabmonoid_wf grp_op_l equal_wf squash_wf true_wf abmonoid_comm abmonoid_ac_1 grp_op_wf iff_weakening_equal grp_id_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination introduction extract_by_obid dependent_functionElimination setElimination rename hypothesisEquality isectElimination productElimination equalityTransitivity equalitySymmetry independent_isectElimination applyEquality lambdaEquality imageElimination universeEquality equalityUniverse levelHypothesis because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed hyp_replacement applyLambdaEquality dependent_pairFormation

Latex:
\mforall{}g:IAbMonoid.  \mforall{}a:|g|.    (Reducible(a)  {}\mRightarrow{}  (\mneg{}(g-unit(a))))



Date html generated: 2017_10_01-AM-09_58_19
Last ObjectModification: 2017_03_03-PM-00_59_30

Theory : factor_1


Home Index