Nuprl Lemma : mcomp_imp_not_unit
∀g:IAbMonoid. ∀a:|g|.  (Reducible(a) 
⇒ (¬(g-unit(a))))
Proof
Definitions occuring in Statement : 
mreducible: Reducible(a)
, 
munit: g-unit(u)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
iabmonoid: IAbMonoid
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
uall: ∀[x:A]. B[x]
, 
mreducible: Reducible(a)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
munit: g-unit(u)
, 
mdivides: b | a
, 
uimplies: b supposing a
, 
squash: ↓T
, 
infix_ap: x f y
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
munit_wf, 
mreducible_wf, 
grp_car_wf, 
iabmonoid_wf, 
grp_op_l, 
equal_wf, 
squash_wf, 
true_wf, 
abmonoid_comm, 
abmonoid_ac_1, 
grp_op_wf, 
iff_weakening_equal, 
grp_id_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
setElimination, 
rename, 
hypothesisEquality, 
isectElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
applyLambdaEquality, 
dependent_pairFormation
Latex:
\mforall{}g:IAbMonoid.  \mforall{}a:|g|.    (Reducible(a)  {}\mRightarrow{}  (\mneg{}(g-unit(a))))
Date html generated:
2017_10_01-AM-09_58_19
Last ObjectModification:
2017_03_03-PM-00_59_30
Theory : factor_1
Home
Index