Nuprl Lemma : munit_of_op
∀g:IAbMonoid. ∀a,b:|g|.  ((g-unit(a * b)) ⇒ ((g-unit(a)) ∧ (g-unit(b))))
Proof
Definitions occuring in Statement : 
munit: g-unit(u), 
infix_ap: x f y, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
iabmonoid: IAbMonoid, 
grp_op: *, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
iabmonoid: IAbMonoid, 
imon: IMonoid, 
infix_ap: x f y, 
uall: ∀[x:A]. B[x], 
munit: g-unit(u), 
mdivides: b | a, 
exists: ∃x:A. B[x], 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
munit_wf, 
grp_op_wf, 
grp_car_wf, 
iabmonoid_wf, 
equal_wf, 
squash_wf, 
true_wf, 
abmonoid_comm, 
iff_weakening_equal, 
mon_assoc, 
grp_id_wf, 
abmonoid_ac_1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
isectElimination, 
because_Cache, 
productElimination, 
dependent_pairFormation, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}g:IAbMonoid.  \mforall{}a,b:|g|.    ((g-unit(a  *  b))  {}\mRightarrow{}  ((g-unit(a))  \mwedge{}  (g-unit(b))))
Date html generated:
2017_10_01-AM-09_57_54
Last ObjectModification:
2017_03_03-PM-00_58_59
Theory : factor_1
Home
Index