Nuprl Lemma : munit_of_op

g:IAbMonoid. ∀a,b:|g|.  ((g-unit(a b))  ((g-unit(a)) ∧ (g-unit(b))))


Proof




Definitions occuring in Statement :  munit: g-unit(u) infix_ap: y all: x:A. B[x] implies:  Q and: P ∧ Q iabmonoid: IAbMonoid grp_op: * grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T prop: iabmonoid: IAbMonoid imon: IMonoid infix_ap: y uall: [x:A]. B[x] munit: g-unit(u) mdivides: a exists: x:A. B[x] squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  munit_wf grp_op_wf grp_car_wf iabmonoid_wf equal_wf squash_wf true_wf abmonoid_comm iff_weakening_equal mon_assoc grp_id_wf abmonoid_ac_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis applyEquality isectElimination because_Cache productElimination dependent_pairFormation lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality equalityUniverse levelHypothesis natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}g:IAbMonoid.  \mforall{}a,b:|g|.    ((g-unit(a  *  b))  {}\mRightarrow{}  ((g-unit(a))  \mwedge{}  (g-unit(b))))



Date html generated: 2017_10_01-AM-09_57_54
Last ObjectModification: 2017_03_03-PM-00_58_59

Theory : factor_1


Home Index