Nuprl Lemma : bsublist_transitivity

s:DSet. ∀us,vs,ws:|s| List.  ((↑bsublist(s;us;vs))  (↑bsublist(s;vs;ws))  (↑bsublist(s;us;ws)))


Proof




Definitions occuring in Statement :  bsublist: bsublist(s;as;bs) list: List assert: b all: x:A. B[x] implies:  Q dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] dset: DSet iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q le: A ≤ B uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  int_formula_prop_wf int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt count_wf decidable__le count_bsublist_a dset_wf set_car_wf list_wf bsublist_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis setElimination rename productElimination independent_functionElimination unionElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll

Latex:
\mforall{}s:DSet.  \mforall{}us,vs,ws:|s|  List.    ((\muparrow{}bsublist(s;us;vs))  {}\mRightarrow{}  (\muparrow{}bsublist(s;vs;ws))  {}\mRightarrow{}  (\muparrow{}bsublist(s;us;ws)))



Date html generated: 2016_05_16-AM-07_41_43
Last ObjectModification: 2016_01_16-PM-11_11_57

Theory : list_2


Home Index