Nuprl Lemma : mset_inter_wf

s:DSet. ∀a,b:MSet{s}.  (a ⋂b ∈ MSet{s})


Proof




Definitions occuring in Statement :  mset_inter: a ⋂b mset: MSet{s} all: x:A. B[x] member: t ∈ T dset: DSet
Definitions unfolded in proof :  mset_inter: a ⋂b all: x:A. B[x] member: t ∈ T mset: MSet{s} quotient: x,y:A//B[x; y] and: P ∧ Q uall: [x:A]. B[x] dset: DSet so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a implies:  Q prop:
Lemmas referenced :  mset_wf dset_wf quotient-member-eq list_wf set_car_wf permr_wf permr_equiv_rel lmin_wf equal-wf-base lmin_functionality_wrt_permr
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut sqequalHypSubstitution hypothesis lemma_by_obid dependent_functionElimination thin hypothesisEquality pointwiseFunctionalityForEquality pertypeElimination productElimination isectElimination setElimination rename lambdaEquality independent_isectElimination independent_functionElimination productEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}s:DSet.  \mforall{}a,b:MSet\{s\}.    (a  \mcap{}s  b  \mmember{}  MSet\{s\})



Date html generated: 2016_05_16-AM-07_48_57
Last ObjectModification: 2015_12_28-PM-06_02_37

Theory : mset


Home Index