Nuprl Lemma : lmin_functionality_wrt_permr
∀s:DSet. ∀as,as',bs,bs':|s| List.  ((as ≡(|s|) as') 
⇒ (bs ≡(|s|) bs') 
⇒ (lmin(s;as;bs) ≡(|s|) lmin(s;as';bs')))
Proof
Definitions occuring in Statement : 
lmin: lmin(s;as;bs)
, 
permr: as ≡(T) bs
, 
list: T List
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
permr_wf, 
set_car_wf, 
list_wf, 
dset_wf, 
permr_iff_eq_counts_a, 
lmin_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
count_lmin, 
subtype_rel_self, 
imin_wf, 
istype-int, 
count_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
productElimination, 
independent_functionElimination, 
because_Cache, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
intEquality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination
Latex:
\mforall{}s:DSet.  \mforall{}as,as',bs,bs':|s|  List.
    ((as  \mequiv{}(|s|)  as')  {}\mRightarrow{}  (bs  \mequiv{}(|s|)  bs')  {}\mRightarrow{}  (lmin(s;as;bs)  \mequiv{}(|s|)  lmin(s;as';bs')))
Date html generated:
2019_10_16-PM-01_04_32
Last ObjectModification:
2018_10_08-AM-10_27_33
Theory : list_2
Home
Index