Nuprl Lemma : free_abmon_umap_properties

S:DSet. ∀M:FAbMon(S). ∀N:AbMon. ∀p:|S| ⟶ |N|.
  ((((M.umap p) M.inj) p ∈ (|S| ⟶ |N|))
  ∧ (∀f:MonHom(M.mon,N). (((f M.inj) p ∈ (|S| ⟶ |N|))  (f (M.umap p) ∈ (|M.mon| ⟶ |N|)))))


Proof




Definitions occuring in Statement :  free_abmon_umap: f.umap free_abmon_inj: f.inj free_abmon_mon: f.mon free_abmonoid: FAbMon(S) compose: g all: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] equal: t ∈ T monoid_hom: MonHom(M1,M2) abmonoid: AbMon grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet abmonoid: AbMon mon: Mon free_abmonoid: FAbMon(S) free_abmon_umap: f.umap pi2: snd(t) free_abmon_inj: f.inj pi1: fst(t) free_abmon_mon: f.mon unique_set: {!x:T P[x]} squash: T and: P ∧ Q implies:  Q prop: monoid_hom: MonHom(M1,M2) subtype_rel: A ⊆B
Lemmas referenced :  set_car_wf grp_car_wf abmonoid_wf free_abmonoid_wf dset_wf equal_wf compose_wf monoid_hom_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation functionEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_functionElimination productElimination sqequalRule applyEquality functionExtensionality applyLambdaEquality imageMemberEquality baseClosed imageElimination independent_pairFormation because_Cache independent_functionElimination lambdaEquality

Latex:
\mforall{}S:DSet.  \mforall{}M:FAbMon(S).  \mforall{}N:AbMon.  \mforall{}p:|S|  {}\mrightarrow{}  |N|.
    ((((M.umap  N  p)  o  M.inj)  =  p)  \mwedge{}  (\mforall{}f:MonHom(M.mon,N).  (((f  o  M.inj)  =  p)  {}\mRightarrow{}  (f  =  (M.umap  N  p)))))



Date html generated: 2017_10_01-AM-10_01_05
Last ObjectModification: 2017_03_03-PM-01_03_21

Theory : polynom_1


Home Index