Nuprl Lemma : mcopower_umap_comm_tri_a
∀s:DSet. ∀g:AbMon. ∀c:MCopower(s;g). ∀h:AbMon. ∀f:|s| ⟶ MonHom(g,h). ∀a:|g|. ∀j:|s|.
  ((f j a) = (c.umap h f (c.inj j a)) ∈ |h|)
Proof
Definitions occuring in Statement : 
mcopower: MCopower(s;g)
, 
mcopower_umap: m.umap
, 
mcopower_inj: m.inj
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
, 
monoid_hom: MonHom(M1,M2)
, 
abmonoid: AbMon
, 
grp_car: |g|
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
abmonoid: AbMon
, 
mon: Mon
, 
compose: f o g
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
monoid_hom: MonHom(M1,M2)
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
set_car_wf, 
grp_car_wf, 
monoid_hom_wf, 
abmonoid_wf, 
mcopower_wf, 
dset_wf, 
equal_wf, 
squash_wf, 
true_wf, 
mcopower_umap_comm_tri, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
functionEquality, 
dependent_functionElimination, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
functionExtensionality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
because_Cache
Latex:
\mforall{}s:DSet.  \mforall{}g:AbMon.  \mforall{}c:MCopower(s;g).  \mforall{}h:AbMon.  \mforall{}f:|s|  {}\mrightarrow{}  MonHom(g,h).  \mforall{}a:|g|.  \mforall{}j:|s|.
    ((f  j  a)  =  (c.umap  h  f  (c.inj  j  a)))
Date html generated:
2017_10_01-AM-10_01_15
Last ObjectModification:
2017_03_03-PM-01_03_29
Theory : polynom_1
Home
Index