Nuprl Lemma : mcopower_umap_comm_tri_a

s:DSet. ∀g:AbMon. ∀c:MCopower(s;g). ∀h:AbMon. ∀f:|s| ⟶ MonHom(g,h). ∀a:|g|. ∀j:|s|.
  ((f a) (c.umap (c.inj a)) ∈ |h|)


Proof




Definitions occuring in Statement :  mcopower: MCopower(s;g) mcopower_umap: m.umap mcopower_inj: m.inj all: x:A. B[x] apply: a function: x:A ⟶ B[x] equal: t ∈ T monoid_hom: MonHom(M1,M2) abmonoid: AbMon grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet abmonoid: AbMon mon: Mon compose: g squash: T prop: subtype_rel: A ⊆B monoid_hom: MonHom(M1,M2) true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  set_car_wf grp_car_wf monoid_hom_wf abmonoid_wf mcopower_wf dset_wf equal_wf squash_wf true_wf mcopower_umap_comm_tri iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality functionEquality dependent_functionElimination sqequalRule applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality functionExtensionality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination because_Cache

Latex:
\mforall{}s:DSet.  \mforall{}g:AbMon.  \mforall{}c:MCopower(s;g).  \mforall{}h:AbMon.  \mforall{}f:|s|  {}\mrightarrow{}  MonHom(g,h).  \mforall{}a:|g|.  \mforall{}j:|s|.
    ((f  j  a)  =  (c.umap  h  f  (c.inj  j  a)))



Date html generated: 2017_10_01-AM-10_01_15
Last ObjectModification: 2017_03_03-PM-01_03_29

Theory : polynom_1


Home Index