Nuprl Lemma : oal_lt_irrefl

s:LOSet. ∀g:OCMon.  Irrefl(|oal(s;g)|;ps,qs.ps << qs)


Proof




Definitions occuring in Statement :  oal_lt: ps << qs oalist: oal(a;b) irrefl: Irrefl(T;x,y.E[x; y]) all: x:A. B[x] ocmon: OCMon loset: LOSet set_car: |p|
Definitions unfolded in proof :  irrefl: Irrefl(T;x,y.E[x; y]) not: ¬A all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T implies:  Q false: False oal_lt: ps << qs exists: x:A. B[x] and: P ∧ Q prop: subtype_rel: A ⊆B dset: DSet guard: {T} loset: LOSet poset: POSet{i} qoset: QOSet ocmon: OCMon abmonoid: AbMon mon: Mon oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set uimplies: supposing a
Lemmas referenced :  oal_lt_wf set_car_wf oalist_wf ocmon_subtype_abdmonoid dset_wf ocmon_wf loset_wf grp_lt_irreflexivity lookup_wf grp_car_wf grp_id_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis lemma_by_obid dependent_functionElimination hypothesisEquality lambdaEquality voidElimination isectElimination applyEquality setElimination rename because_Cache independent_isectElimination

Latex:
\mforall{}s:LOSet.  \mforall{}g:OCMon.    Irrefl(|oal(s;g)|;ps,qs.ps  <<  qs)



Date html generated: 2016_05_16-AM-08_21_06
Last ObjectModification: 2015_12_28-PM-06_25_09

Theory : polynom_2


Home Index