Nuprl Lemma : oal_lt_wf
∀s:LOSet. ∀g:OCMon. ∀ps,qs:|oal(s;g)|. (ps << qs ∈ ℙ)
Proof
Definitions occuring in Statement :
oal_lt: ps << qs
,
oalist: oal(a;b)
,
prop: ℙ
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
ocmon: OCMon
,
loset: LOSet
,
set_car: |p|
Definitions unfolded in proof :
oal_lt: ps << qs
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
loset: LOSet
,
poset: POSet{i}
,
qoset: QOSet
,
dset: DSet
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
and: P ∧ Q
,
implies: P
⇒ Q
,
ocmon: OCMon
,
abmonoid: AbMon
,
mon: Mon
,
subtype_rel: A ⊆r B
,
oalist: oal(a;b)
,
dset_set: dset_set,
mk_dset: mk_dset(T, eq)
,
set_car: |p|
,
pi1: fst(t)
,
dset_list: s List
,
set_prod: s × t
,
dset_of_mon: g↓set
,
so_apply: x[s]
Lemmas referenced :
exists_wf,
set_car_wf,
all_wf,
set_lt_wf,
equal_wf,
grp_car_wf,
lookup_wf,
grp_id_wf,
oalist_wf,
ocmon_subtype_abdmonoid,
dset_wf,
grp_lt_wf,
ocmon_wf,
loset_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setElimination,
rename,
because_Cache,
hypothesis,
lambdaEquality,
productEquality,
functionEquality,
hypothesisEquality,
dependent_functionElimination,
applyEquality
Latex:
\mforall{}s:LOSet. \mforall{}g:OCMon. \mforall{}ps,qs:|oal(s;g)|. (ps << qs \mmember{} \mBbbP{})
Date html generated:
2017_10_01-AM-10_04_00
Last ObjectModification:
2017_03_03-PM-01_07_08
Theory : polynom_2
Home
Index