Nuprl Lemma : omral_action_times_r2

g:OCMon. ∀r:CDRng. ∀v:|r|. ∀ps,qs:|omral(g;r)|.  ((v ⋅⋅ (ps ** qs)) (ps ** (v ⋅⋅ qs)) ∈ |omral(g;r)|)


Proof




Definitions occuring in Statement :  omral_action: v ⋅⋅ ps omral_times: ps ** qs omralist: omral(g;r) all: x:A. B[x] equal: t ∈ T cdrng: CDRng rng_car: |r| ocmon: OCMon set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T squash: T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B dset: DSet cdrng: CDRng crng: CRng rng: Rng true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf omral_action_wf set_car_wf omralist_wf dset_wf rng_car_wf cdrng_wf ocmon_wf omral_times_comm_a iff_weakening_equal omral_times_wf2 omral_action_times_r1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality because_Cache dependent_functionElimination setElimination rename sqequalRule natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}v:|r|.  \mforall{}ps,qs:|omral(g;r)|.    ((v  \mcdot{}\mcdot{}  (ps  **  qs))  =  (ps  **  (v  \mcdot{}\mcdot{}  qs)))



Date html generated: 2017_10_01-AM-10_07_02
Last ObjectModification: 2017_03_03-PM-01_14_40

Theory : polynom_3


Home Index