Nuprl Lemma : omral_action_times_r1

g:OCMon. ∀r:CDRng. ∀v:|r|. ∀ps,qs:|omral(g;r)|.  ((v ⋅⋅ (ps ** qs)) ((v ⋅⋅ ps) ** qs) ∈ |omral(g;r)|)


Proof




Definitions occuring in Statement :  omral_action: v ⋅⋅ ps omral_times: ps ** qs omralist: omral(g;r) all: x:A. B[x] equal: t ∈ T cdrng: CDRng rng_car: |r| ocmon: OCMon set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] ocmon: OCMon abmonoid: AbMon mon: Mon subtype_rel: A ⊆B dset: DSet cdrng: CDRng crng: CRng rng: Rng squash: T prop: infix_ap: y omon: OMon so_lambda: λ2x.t[x] and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff so_apply: x[s] cand: c∧ B abgrp: AbGrp grp: Group{i} iabmonoid: IAbMonoid imon: IMonoid oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) add_grp_of_rng: r↓+gp grp_car: |g| omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) dset_list: List set_prod: s × t grp_id: e pi2: snd(t) true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q rng_mssum: rng_mssum loset: LOSet poset: POSet{i} qoset: QOSet
Lemmas referenced :  omral_lookups_same_a omral_action_wf omral_times_wf2 grp_car_wf set_car_wf omralist_wf dset_wf rng_car_wf cdrng_wf ocmon_wf equal_wf squash_wf true_wf lookup_omral_action rng_times_wf lookup_omral_times mset_for_functionality oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf assert_wf infix_ap_wf bool_wf grp_le_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf add_grp_of_rng_wf_b grp_sig_wf monoid_p_wf grp_id_wf inverse_wf grp_inv_wf comm_wf set_wf mset_for_wf rng_when_wf oset_of_ocmon_wf0 dset_of_mon_wf0 add_grp_of_rng_wf lookup_wf rng_zero_wf omral_dom_wf rng_wf mset_mem_wf iff_weakening_equal loset_wf mset_for_functionality_wrt_bsubmset mset_diff_wf omral_dom_action assert_functionality_wrt_uiff bnot_wf mset_mem_diff omral_dom_wf2 iff_transitivity not_wf iff_weakening_uiff assert_of_band assert_of_bnot lookup_omral_eq_zero rng_times_zero rng_when_of_zero mset_for_of_id rng_times_mssum_l rng_mssum_wf rng_mssum_functionality_wrt_equal rng_times_when_l rng_times_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis independent_functionElimination isectElimination setElimination rename applyEquality lambdaEquality sqequalRule because_Cache imageElimination equalityTransitivity equalitySymmetry universeEquality instantiate productEquality cumulativity functionEquality unionElimination equalityElimination productElimination independent_isectElimination setEquality independent_pairFormation natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}v:|r|.  \mforall{}ps,qs:|omral(g;r)|.    ((v  \mcdot{}\mcdot{}  (ps  **  qs))  =  ((v  \mcdot{}\mcdot{}  ps)  **  qs))



Date html generated: 2017_10_01-AM-10_07_00
Last ObjectModification: 2017_03_03-PM-01_16_24

Theory : polynom_3


Home Index