Nuprl Lemma : lookup_omral_action

g:OCMon. ∀r:CDRng. ∀k:|g|. ∀v:|r|. ∀ps:|omral(g;r)|.  (((v ⋅⋅ ps)[k]) (v (ps[k])) ∈ |r|)


Proof




Definitions occuring in Statement :  omral_action: v ⋅⋅ ps omralist: omral(g;r) lookup: as[k] infix_ap: y all: x:A. B[x] equal: t ∈ T cdrng: CDRng rng_times: * rng_zero: 0 rng_car: |r| oset_of_ocmon: g↓oset ocmon: OCMon grp_car: |g| set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] omral_action: v ⋅⋅ ps member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet cdrng: CDRng crng: CRng rng: Rng ocmon: OCMon abmonoid: AbMon mon: Mon squash: T prop: guard: {T} uimplies: supposing a and: P ∧ Q oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) dset_list: List set_prod: s × t add_grp_of_rng: r↓+gp grp_id: e pi2: snd(t) grp_car: |g| true: True iff: ⇐⇒ Q implies:  Q rev_implies:  Q
Lemmas referenced :  set_car_wf omralist_wf dset_wf rng_car_wf grp_car_wf cdrng_wf ocmon_wf equal_wf squash_wf true_wf lookup_wf list_wf poset_sig_wf oset_of_ocmon_wf0 rng_zero_wf mon_ident iabmonoid_subtype_imon abmonoid_subtype_iabmonoid abdmonoid_abmonoid ocmon_subtype_abdmonoid subtype_rel_transitivity abdmonoid_wf abmonoid_wf iabmonoid_wf imon_wf omral_scale_wf grp_id_wf iff_weakening_equal lookup_omral_scale_a infix_ap_wf dset_of_mon_wf0 add_grp_of_rng_wf rng_times_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality applyEquality lambdaEquality setElimination rename sqequalRule imageElimination equalityTransitivity equalitySymmetry universeEquality productEquality cumulativity because_Cache instantiate independent_isectElimination productElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination functionEquality

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}k:|g|.  \mforall{}v:|r|.  \mforall{}ps:|omral(g;r)|.    (((v  \mcdot{}\mcdot{}  ps)[k])  =  (v  *  (ps[k])))



Date html generated: 2017_10_01-AM-10_06_44
Last ObjectModification: 2017_03_03-PM-01_14_19

Theory : polynom_3


Home Index