Nuprl Lemma : mset_for_functionality_wrt_bsubmset
∀s:DSet. ∀g:IAbMonoid. ∀f,f':|s| ⟶ |g|. ∀p,q:MSet{s}.
  ((∀x:|s|. ((↑(x ∈b q - p)) 
⇒ (f'[x] = e ∈ |g|)))
  
⇒ (↑(p ⊆b q))
  
⇒ (∀x:|s|. ((↑(x ∈b p)) 
⇒ (f[x] = f'[x] ∈ |g|)))
  
⇒ ((msFor{g} x ∈ p. f[x]) = (msFor{g} x ∈ q. f'[x]) ∈ |g|))
Proof
Definitions occuring in Statement : 
bsubmset: a ⊆b b
, 
mset_diff: a - b
, 
mset_for: mset_for, 
mset_mem: mset_mem, 
mset: MSet{s}
, 
assert: ↑b
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
, 
iabmonoid: IAbMonoid
, 
grp_id: e
, 
grp_car: |g|
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
so_lambda: λ2x.t[x]
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
all_wf, 
set_car_wf, 
assert_wf, 
mset_mem_wf, 
equal_wf, 
grp_car_wf, 
bsubmset_wf, 
mset_diff_wf, 
grp_id_wf, 
mset_wf, 
iabmonoid_wf, 
dset_wf, 
mset_for_dom_shift, 
squash_wf, 
true_wf, 
mset_for_wf, 
iff_weakening_equal, 
mset_for_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
dependent_functionElimination, 
applyEquality, 
functionExtensionality, 
because_Cache, 
independent_functionElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}s:DSet.  \mforall{}g:IAbMonoid.  \mforall{}f,f':|s|  {}\mrightarrow{}  |g|.  \mforall{}p,q:MSet\{s\}.
    ((\mforall{}x:|s|.  ((\muparrow{}(x  \mmember{}\msubb{}  q  -  p))  {}\mRightarrow{}  (f'[x]  =  e)))
    {}\mRightarrow{}  (\muparrow{}(p  \msubseteq{}\msubb{}  q))
    {}\mRightarrow{}  (\mforall{}x:|s|.  ((\muparrow{}(x  \mmember{}\msubb{}  p))  {}\mRightarrow{}  (f[x]  =  f'[x])))
    {}\mRightarrow{}  ((msFor\{g\}  x  \mmember{}  p.  f[x])  =  (msFor\{g\}  x  \mmember{}  q.  f'[x])))
Date html generated:
2017_10_01-AM-10_00_51
Last ObjectModification:
2017_03_03-PM-01_02_02
Theory : mset
Home
Index