Nuprl Lemma : omral_dom_action
∀g:OCMon. ∀r:CDRng. ∀v:|r|. ∀ps:|omral(g;r)|.  (↑(dom(v ⋅⋅ ps) ⊆b dom(ps)))
Proof
Definitions occuring in Statement : 
omral_action: v ⋅⋅ ps
, 
omral_dom: dom(ps)
, 
omralist: omral(g;r)
, 
bsubmset: a ⊆b b
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
cdrng: CDRng
, 
rng_car: |r|
, 
oset_of_ocmon: g↓oset
, 
ocmon: OCMon
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
dset: DSet
, 
cdrng: CDRng
, 
crng: CRng
, 
rng: Rng
, 
omral_action: v ⋅⋅ ps
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ocmon: OCMon
, 
omon: OMon
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
abmonoid: AbMon
, 
mon: Mon
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
bfalse: ff
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
set_car: |p|
, 
pi1: fst(t)
, 
omralist: omral(g;r)
, 
oalist: oal(a;b)
, 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq)
, 
dset_list: s List
, 
set_prod: s × t
, 
add_grp_of_rng: r↓+gp
, 
grp_id: e
, 
pi2: snd(t)
, 
grp_car: |g|
, 
finite_set: FiniteSet{s}
, 
rev_bimplies: p 
⇐b q
, 
bsupmset: a ⊇bs b
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
fset_map: fs-map(f, a)
, 
squash: ↓T
, 
tidentity: Id{T}
, 
identity: Id
, 
true: True
Lemmas referenced : 
set_car_wf, 
omralist_wf, 
dset_wf, 
rng_car_wf, 
cdrng_wf, 
ocmon_wf, 
assert_functionality_wrt_bimplies, 
bsubmset_wf, 
oset_of_ocmon_wf, 
subtype_rel_sets, 
abmonoid_wf, 
ulinorder_wf, 
grp_car_wf, 
assert_wf, 
infix_ap_wf, 
bool_wf, 
grp_le_wf, 
equal_wf, 
grp_eq_wf, 
eqtt_to_assert, 
cancel_wf, 
grp_op_wf, 
uall_wf, 
monot_wf, 
fset_map_wf, 
oset_of_ocmon_wf0, 
grp_id_wf, 
omral_dom_wf, 
finite_set_wf, 
omral_scale_wf, 
bsubmset_functionality_wrt_bsubmset, 
omral_dom_scale, 
bsubmset_weakening, 
mem_bsubmset, 
mset_mem_wf, 
assert_functionality_wrt_uiff, 
fset_of_mset_wf, 
mset_map_wf, 
fset_of_mset_mem, 
tidentity_wf, 
squash_wf, 
true_wf, 
mset_wf, 
mon_ident, 
iabmonoid_subtype_imon, 
abmonoid_subtype_iabmonoid, 
abdmonoid_abmonoid, 
ocmon_subtype_abdmonoid, 
subtype_rel_transitivity, 
abdmonoid_wf, 
iabmonoid_wf, 
imon_wf, 
mset_map_id
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
instantiate, 
because_Cache, 
productEquality, 
cumulativity, 
universeEquality, 
functionEquality, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
setEquality, 
independent_pairFormation, 
imageElimination, 
functionExtensionality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}v:|r|.  \mforall{}ps:|omral(g;r)|.    (\muparrow{}(dom(v  \mcdot{}\mcdot{}  ps)  \msubseteq{}\msubb{}  dom(ps)))
Date html generated:
2017_10_01-AM-10_06_42
Last ObjectModification:
2017_03_03-PM-01_14_45
Theory : polynom_3
Home
Index