Nuprl Lemma : omral_dom_action
∀g:OCMon. ∀r:CDRng. ∀v:|r|. ∀ps:|omral(g;r)|.  (↑(dom(v ⋅⋅ ps) ⊆b dom(ps)))
Proof
Definitions occuring in Statement : 
omral_action: v ⋅⋅ ps, 
omral_dom: dom(ps), 
omralist: omral(g;r), 
bsubmset: a ⊆b b, 
assert: ↑b, 
all: ∀x:A. B[x], 
cdrng: CDRng, 
rng_car: |r|, 
oset_of_ocmon: g↓oset, 
ocmon: OCMon, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
dset: DSet, 
cdrng: CDRng, 
crng: CRng, 
rng: Rng, 
omral_action: v ⋅⋅ ps, 
rev_uimplies: rev_uimplies(P;Q), 
ocmon: OCMon, 
omon: OMon, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
abmonoid: AbMon, 
mon: Mon, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
bfalse: ff, 
infix_ap: x f y, 
so_apply: x[s], 
cand: A c∧ B, 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
set_car: |p|, 
pi1: fst(t), 
omralist: omral(g;r), 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
dset_list: s List, 
set_prod: s × t, 
add_grp_of_rng: r↓+gp, 
grp_id: e, 
pi2: snd(t), 
grp_car: |g|, 
finite_set: FiniteSet{s}, 
rev_bimplies: p ⇐b q, 
bsupmset: a ⊇bs b, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
fset_map: fs-map(f, a), 
squash: ↓T, 
tidentity: Id{T}, 
identity: Id, 
true: True
Lemmas referenced : 
set_car_wf, 
omralist_wf, 
dset_wf, 
rng_car_wf, 
cdrng_wf, 
ocmon_wf, 
assert_functionality_wrt_bimplies, 
bsubmset_wf, 
oset_of_ocmon_wf, 
subtype_rel_sets, 
abmonoid_wf, 
ulinorder_wf, 
grp_car_wf, 
assert_wf, 
infix_ap_wf, 
bool_wf, 
grp_le_wf, 
equal_wf, 
grp_eq_wf, 
eqtt_to_assert, 
cancel_wf, 
grp_op_wf, 
uall_wf, 
monot_wf, 
fset_map_wf, 
oset_of_ocmon_wf0, 
grp_id_wf, 
omral_dom_wf, 
finite_set_wf, 
omral_scale_wf, 
bsubmset_functionality_wrt_bsubmset, 
omral_dom_scale, 
bsubmset_weakening, 
mem_bsubmset, 
mset_mem_wf, 
assert_functionality_wrt_uiff, 
fset_of_mset_wf, 
mset_map_wf, 
fset_of_mset_mem, 
tidentity_wf, 
squash_wf, 
true_wf, 
mset_wf, 
mon_ident, 
iabmonoid_subtype_imon, 
abmonoid_subtype_iabmonoid, 
abdmonoid_abmonoid, 
ocmon_subtype_abdmonoid, 
subtype_rel_transitivity, 
abdmonoid_wf, 
iabmonoid_wf, 
imon_wf, 
mset_map_id
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
instantiate, 
because_Cache, 
productEquality, 
cumulativity, 
universeEquality, 
functionEquality, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
setEquality, 
independent_pairFormation, 
imageElimination, 
functionExtensionality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}v:|r|.  \mforall{}ps:|omral(g;r)|.    (\muparrow{}(dom(v  \mcdot{}\mcdot{}  ps)  \msubseteq{}\msubb{}  dom(ps)))
Date html generated:
2017_10_01-AM-10_06_42
Last ObjectModification:
2017_03_03-PM-01_14_45
Theory : polynom_3
Home
Index