Nuprl Lemma : omral_dom_action

g:OCMon. ∀r:CDRng. ∀v:|r|. ∀ps:|omral(g;r)|.  (↑(dom(v ⋅⋅ ps) ⊆b dom(ps)))


Proof




Definitions occuring in Statement :  omral_action: v ⋅⋅ ps omral_dom: dom(ps) omralist: omral(g;r) bsubmset: a ⊆b b assert: b all: x:A. B[x] cdrng: CDRng rng_car: |r| oset_of_ocmon: g↓oset ocmon: OCMon set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet cdrng: CDRng crng: CRng rng: Rng omral_action: v ⋅⋅ ps rev_uimplies: rev_uimplies(P;Q) ocmon: OCMon omon: OMon so_lambda: λ2x.t[x] prop: and: P ∧ Q abmonoid: AbMon mon: Mon so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y so_apply: x[s] cand: c∧ B oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) dset_list: List set_prod: s × t add_grp_of_rng: r↓+gp grp_id: e pi2: snd(t) grp_car: |g| finite_set: FiniteSet{s} rev_bimplies: b q bsupmset: a ⊇bb guard: {T} iff: ⇐⇒ Q rev_implies:  Q fset_map: fs-map(f, a) squash: T tidentity: Id{T} identity: Id true: True
Lemmas referenced :  set_car_wf omralist_wf dset_wf rng_car_wf cdrng_wf ocmon_wf assert_functionality_wrt_bimplies bsubmset_wf oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf grp_car_wf assert_wf infix_ap_wf bool_wf grp_le_wf equal_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf fset_map_wf oset_of_ocmon_wf0 grp_id_wf omral_dom_wf finite_set_wf omral_scale_wf bsubmset_functionality_wrt_bsubmset omral_dom_scale bsubmset_weakening mem_bsubmset mset_mem_wf assert_functionality_wrt_uiff fset_of_mset_wf mset_map_wf fset_of_mset_mem tidentity_wf squash_wf true_wf mset_wf mon_ident iabmonoid_subtype_imon abmonoid_subtype_iabmonoid abdmonoid_abmonoid ocmon_subtype_abdmonoid subtype_rel_transitivity abdmonoid_wf iabmonoid_wf imon_wf mset_map_id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule instantiate because_Cache productEquality cumulativity universeEquality functionEquality unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination setEquality independent_pairFormation imageElimination functionExtensionality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}v:|r|.  \mforall{}ps:|omral(g;r)|.    (\muparrow{}(dom(v  \mcdot{}\mcdot{}  ps)  \msubseteq{}\msubb{}  dom(ps)))



Date html generated: 2017_10_01-AM-10_06_42
Last ObjectModification: 2017_03_03-PM-01_14_45

Theory : polynom_3


Home Index