Nuprl Lemma : mset_map_id

s:DSet. ∀a:MSet{s}.  (msmap{s,s}(Id{|s|};a) a ∈ MSet{s})


Proof




Definitions occuring in Statement :  mset_map: msmap{s,s'}(f;a) mset: MSet{s} tidentity: Id{T} all: x:A. B[x] equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] prop: so_apply: x[s] tidentity: Id{T} mset_map: msmap{s,s'}(f;a) squash: T subtype_rel: A ⊆B true: True uimplies: supposing a guard: {T}
Lemmas referenced :  equal_mset_elim map_wf set_car_wf tidentity_wf iff_transitivity all_wf dset_wf mset_wf equal_wf mset_map_wf list_wf mk_mset_wf all_mset_elim sq_stable__equal squash_wf true_wf subtype_rel_poset eqfun_p_wf set_eq_wf mset_map_char iff_weakening_equal permr_wf permr_weakening map_id
Rules used in proof :  cut addLevel allFunctionality introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesisEquality isectElimination setElimination rename hypothesis because_Cache productElimination independent_functionElimination instantiate sqequalRule lambdaEquality cumulativity independent_pairFormation lambdaFormation applyEquality imageElimination equalityTransitivity equalitySymmetry functionEquality universeEquality dependent_set_memberEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination levelHypothesis allLevelFunctionality

Latex:
\mforall{}s:DSet.  \mforall{}a:MSet\{s\}.    (msmap\{s,s\}(Id\{|s|\};a)  =  a)



Date html generated: 2017_10_01-AM-09_59_45
Last ObjectModification: 2017_03_03-PM-01_01_08

Theory : mset


Home Index