Nuprl Lemma : mset_map_id
∀s:DSet. ∀a:MSet{s}.  (msmap{s,s}(Id{|s|};a) = a ∈ MSet{s})
Proof
Definitions occuring in Statement : 
mset_map: msmap{s,s'}(f;a)
, 
mset: MSet{s}
, 
tidentity: Id{T}
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
tidentity: Id{T}
, 
mset_map: msmap{s,s'}(f;a)
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
equal_mset_elim, 
map_wf, 
set_car_wf, 
tidentity_wf, 
iff_transitivity, 
all_wf, 
dset_wf, 
mset_wf, 
equal_wf, 
mset_map_wf, 
list_wf, 
mk_mset_wf, 
all_mset_elim, 
sq_stable__equal, 
squash_wf, 
true_wf, 
subtype_rel_poset, 
eqfun_p_wf, 
set_eq_wf, 
mset_map_char, 
iff_weakening_equal, 
permr_wf, 
permr_weakening, 
map_id
Rules used in proof : 
cut, 
addLevel, 
allFunctionality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
productElimination, 
independent_functionElimination, 
instantiate, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
independent_pairFormation, 
lambdaFormation, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
levelHypothesis, 
allLevelFunctionality
Latex:
\mforall{}s:DSet.  \mforall{}a:MSet\{s\}.    (msmap\{s,s\}(Id\{|s|\};a)  =  a)
Date html generated:
2017_10_01-AM-09_59_45
Last ObjectModification:
2017_03_03-PM-01_01_08
Theory : mset
Home
Index