Nuprl Lemma : bsubmset_functionality_wrt_bsubmset
∀s:DSet. ∀a,a',b,b':MSet{s}.  ((↑(a ⊇bs b)) 
⇒ (↑(a' ⊆b b')) 
⇒ (↑(a ⊆b a' 
⇒b (b ⊆b b'))))
Proof
Definitions occuring in Statement : 
bsupmset: a ⊇bs b
, 
bsubmset: a ⊆b b
, 
mset: MSet{s}
, 
bimplies: p 
⇒b q
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
dset: DSet
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
bsupmset: a ⊇bs b
, 
member: t ∈ T
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
dset: DSet
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
dset_wf, 
all_mset_elim, 
rev_implies_wf, 
assert_wf, 
bimplies_wf, 
bsubmset_wf, 
mk_mset_wf, 
mset_wf, 
sq_stable__all, 
sq_stable_from_decidable, 
decidable__assert, 
all_wf, 
list_wf, 
set_car_wf, 
iff_weakening_uiff, 
isect_wf, 
assert_of_bimplies, 
assert_functionality_wrt_uiff, 
bsublist_wf, 
bsubmset_elim, 
bsublist_transitivity, 
assert_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalRule, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
lambdaEquality_alt, 
isectElimination, 
because_Cache, 
isect_memberEquality_alt, 
independent_functionElimination, 
productElimination, 
inhabitedIsType, 
functionEquality, 
setElimination, 
rename, 
isect_memberFormation_alt, 
independent_isectElimination
Latex:
\mforall{}s:DSet.  \mforall{}a,a',b,b':MSet\{s\}.    ((\muparrow{}(a  \msupseteq{}\msubb{}s  b))  {}\mRightarrow{}  (\muparrow{}(a'  \msubseteq{}\msubb{}  b'))  {}\mRightarrow{}  (\muparrow{}(a  \msubseteq{}\msubb{}  a'  {}\mRightarrow{}\msubb{}  (b  \msubseteq{}\msubb{}  b'))))
Date html generated:
2019_10_16-PM-01_06_48
Last ObjectModification:
2018_10_15-PM-08_51_11
Theory : mset
Home
Index