Nuprl Lemma : bsubmset_functionality_wrt_bsubmset

s:DSet. ∀a,a',b,b':MSet{s}.  ((↑(a ⊇bb))  (↑(a' ⊆b b'))  (↑(a ⊆b a' b (b ⊆b b'))))


Proof




Definitions occuring in Statement :  bsupmset: a ⊇bb bsubmset: a ⊆b b mset: MSet{s} bimplies: b q assert: b all: x:A. B[x] implies:  Q dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] bsupmset: a ⊇bb member: t ∈ T rev_implies:  Q so_lambda: λ2x.t[x] uall: [x:A]. B[x] uimplies: supposing a prop: so_apply: x[s] implies:  Q iff: ⇐⇒ Q and: P ∧ Q dset: DSet guard: {T} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  dset_wf all_mset_elim rev_implies_wf assert_wf bimplies_wf bsubmset_wf mk_mset_wf mset_wf sq_stable__all sq_stable_from_decidable decidable__assert all_wf list_wf set_car_wf iff_weakening_uiff isect_wf assert_of_bimplies assert_functionality_wrt_uiff bsublist_wf bsubmset_elim bsublist_transitivity assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalRule universeIsType cut introduction extract_by_obid hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality lambdaEquality_alt isectElimination because_Cache isect_memberEquality_alt independent_functionElimination productElimination inhabitedIsType functionEquality setElimination rename isect_memberFormation_alt independent_isectElimination

Latex:
\mforall{}s:DSet.  \mforall{}a,a',b,b':MSet\{s\}.    ((\muparrow{}(a  \msupseteq{}\msubb{}s  b))  {}\mRightarrow{}  (\muparrow{}(a'  \msubseteq{}\msubb{}  b'))  {}\mRightarrow{}  (\muparrow{}(a  \msubseteq{}\msubb{}  a'  {}\mRightarrow{}\msubb{}  (b  \msubseteq{}\msubb{}  b'))))



Date html generated: 2019_10_16-PM-01_06_48
Last ObjectModification: 2018_10_15-PM-08_51_11

Theory : mset


Home Index