Nuprl Lemma : fpf-cap-single-join

[A:Type]. ∀[eq:EqDecider(A)]. ∀[x:A]. ∀[v,z,f:Top].  (x v ⊕ f(x)?z v)


Proof




Definitions occuring in Statement :  fpf-single: v fpf-join: f ⊕ g fpf-cap: f(x)?z deq: EqDecider(T) uall: [x:A]. B[x] top: Top universe: Type sqequal: t
Lemmas :  fpf_ap_pair_lemma list_ind_cons_lemma list_ind_nil_lemma deq_member_cons_lemma deq_member_nil_lemma bool_wf eqtt_to_assert safe-assert-deq eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot deq-member_wf filter_wf5 pi1_wf_top list_wf l_member_wf bnot_wf bor_wf bfalse_wf assert-deq-member eqof_wf top_wf deq_wf
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[x:A].  \mforall{}[v,z,f:Top].    (x  :  v  \moplus{}  f(x)?z  \msim{}  v)



Date html generated: 2015_07_17-AM-11_08_49
Last ObjectModification: 2015_01_28-AM-07_45_59

Home Index