Nuprl Lemma : fpf-cap-single-join
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[x:A]. ∀[v,z,f:Top]. (x : v ⊕ f(x)?z ~ v)
Proof
Definitions occuring in Statement :
fpf-single: x : v
,
fpf-join: f ⊕ g
,
fpf-cap: f(x)?z
,
deq: EqDecider(T)
,
uall: ∀[x:A]. B[x]
,
top: Top
,
universe: Type
,
sqequal: s ~ t
Lemmas :
fpf_ap_pair_lemma,
list_ind_cons_lemma,
list_ind_nil_lemma,
deq_member_cons_lemma,
deq_member_nil_lemma,
bool_wf,
eqtt_to_assert,
safe-assert-deq,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
deq-member_wf,
filter_wf5,
pi1_wf_top,
list_wf,
l_member_wf,
bnot_wf,
bor_wf,
bfalse_wf,
assert-deq-member,
eqof_wf,
top_wf,
deq_wf
\mforall{}[A:Type]. \mforall{}[eq:EqDecider(A)]. \mforall{}[x:A]. \mforall{}[v,z,f:Top]. (x : v \moplus{} f(x)?z \msim{} v)
Date html generated:
2015_07_17-AM-11_08_49
Last ObjectModification:
2015_01_28-AM-07_45_59
Home
Index