Nuprl Lemma : fpf-compatible-triple
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[f,g,h:x:T fp-> Type].
  ({(g ⊆ h ⊕ f ⊕ g ∧ f ⊆ h ⊕ f ⊕ g) ∧ h ⊕ g ⊆ h ⊕ f ⊕ g ∧ h ⊕ f ⊆ h ⊕ f ⊕ g}) supposing (h || g and h || f and f || g)
Proof
Definitions occuring in Statement : 
fpf-join: f ⊕ g
, 
fpf-compatible: f || g
, 
fpf-sub: f ⊆ g
, 
fpf: a:A fp-> B[a]
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
and: P ∧ Q
, 
universe: Type
Lemmas : 
fpf-join-dom, 
fpf-join_wf, 
assert_wf, 
fpf-dom_wf, 
subtype-fpf2, 
top_wf, 
subtype_top, 
or_wf, 
fpf-sub_witness, 
fpf-compatible_wf, 
fpf_wf, 
deq_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
fpf-ap_wf, 
fpf-join-ap-sq
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[f,g,h:x:T  fp->  Type].
    (\{(g  \msubseteq{}  h  \moplus{}  f  \moplus{}  g  \mwedge{}  f  \msubseteq{}  h  \moplus{}  f  \moplus{}  g)  \mwedge{}  h  \moplus{}  g  \msubseteq{}  h  \moplus{}  f  \moplus{}  g  \mwedge{}  h  \moplus{}  f  \msubseteq{}  h  \moplus{}  f  \moplus{}  g\})  supposing 
          (h  ||  g  and 
          h  ||  f  and 
          f  ||  g)
Date html generated:
2015_07_17-AM-11_14_23
Last ObjectModification:
2015_01_28-AM-07_45_50
Home
Index