Nuprl Lemma : fpf-join-list-ap

[A:Type]
  ∀eq:EqDecider(A)
    ∀[B:A ─→ Type]
      ∀L:a:A fp-> B[a] List. ∀x:A.  (∃f∈L. (↑x ∈ dom(f)) ∧ (⊕(L)(x) f(x) ∈ B[x])) supposing ↑x ∈ dom(⊕(L))


Proof




Definitions occuring in Statement :  fpf-join-list: (L) fpf-ap: f(x) fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) l_exists: (∃x∈L. P[x]) list: List assert: b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] and: P ∧ Q function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  fpf-join-dom fpf-join_wf subtype_top top_wf subtype-fpf2 fpf-dom_wf assert_wf l_member_wf fpf_wf l_exists_wf iff_weakening_equal fpf-ap_wf fpf-join-list_wf fpf-join-ap-left sq_stable__le select_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert eqtt_to_assert bool_wf fpf-join-ap
\mforall{}[A:Type]
    \mforall{}eq:EqDecider(A)
        \mforall{}[B:A  {}\mrightarrow{}  Type]
            \mforall{}L:a:A  fp->  B[a]  List.  \mforall{}x:A.
                (\mexists{}f\mmember{}L.  (\muparrow{}x  \mmember{}  dom(f))  \mwedge{}  (\moplus{}(L)(x)  =  f(x)))  supposing  \muparrow{}x  \mmember{}  dom(\moplus{}(L))



Date html generated: 2015_07_17-AM-09_21_01
Last ObjectModification: 2015_07_16-AM-09_51_32

Home Index