Nuprl Lemma : fpf-sub-join-right

[A:Type]. ∀[B:A ─→ Type]. ∀[eq:EqDecider(A)]. ∀[f,g:a:A fp-> B[a]].  g ⊆ f ⊕ supposing || g


Proof




Definitions occuring in Statement :  fpf-join: f ⊕ g fpf-compatible: || g fpf-sub: f ⊆ g fpf: a:A fp-> B[a] deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type
Lemmas :  bool_wf assert_of_bnot eqff_to_assert uiff_transitivity not_wf assert_wf eqtt_to_assert fpf-ap_wf fpf-join-ap top_wf subtype_top subtype-fpf2 subtype_base_sq fpf_wf fpf-dom_wf squash_wf deq_wf fpf-join-dom fpf-join_wf fpf-compatible_wf fpf-sub_witness equal-wf-base equal-wf-base-T equal-wf-T-base bnot_wf
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g:a:A  fp->  B[a]].    g  \msubseteq{}  f  \moplus{}  g  supposing  f  ||  g



Date html generated: 2015_07_17-AM-09_20_32
Last ObjectModification: 2015_01_28-AM-07_48_42

Home Index