Nuprl Lemma : interface-predecessors-split

[Info:Type]
  ∀es:EO+(Info). ∀X:EClass(Top). ∀e:E(X). ∀A,B:E(X) List.
    (∃p:E(X)
      (p ≤loc 
      ∧ (≤(X)(p) A ∈ (E(X) List))
      ∧ (filter(λa.p <loc a;≤(X)(e)) B ∈ (E(X) List))
      ∧ (p <loc e) supposing ¬↑null(B)
      ∧ (p last(A) ∈ E))) supposing 
       ((¬↑null(A)) and 
       (≤(X)(e) (A B) ∈ (E(X) List)))


Proof




Definitions occuring in Statement :  es-interface-predecessors: (X)(e) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-bless: e <loc e' es-le: e ≤loc e'  es-locl: (e <loc e') es-E: E last: last(L) filter: filter(P;l) append: as bs null: null(as) list: List assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q lambda: λx.A[x] universe: Type equal: t ∈ T
Lemmas :  iseg-remainder-as-filter es-E-interface_wf es-locl_wf event-ordering+_subtype es-locl-antireflexive assert_elim in-eclass_wf subtype_base_sq bool_wf bool_subtype_base es-locl_transitivity2 es-le_weakening es-locl_irreflexivity assert_wf es-interface-predecessors-sorted-by-locl es-bless_wf assert-es-bless equal_wf list_wf filter_wf5 l_member_wf length_wf length-append es-interface-predecessors_wf squash_wf true_wf es-E_wf eclass_wf top_wf event-ordering+_wf subtype_rel_list Id_wf es-loc_wf list-cases length_of_nil_lemma null_nil_lemma product_subtype_list length_of_cons_lemma null_cons_lemma non_neg_length length_wf_nat

Latex:
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}e:E(X).  \mforall{}A,B:E(X)  List.
        (\mexists{}p:E(X)
            (p  \mleq{}loc  e 
            \mwedge{}  (\mleq{}(X)(p)  =  A)
            \mwedge{}  (filter(\mlambda{}a.p  <loc  a;\mleq{}(X)(e))  =  B)
            \mwedge{}  (p  <loc  e)  supposing  \mneg{}\muparrow{}null(B)
            \mwedge{}  (p  =  last(A))))  supposing 
              ((\mneg{}\muparrow{}null(A))  and 
              (\mleq{}(X)(e)  =  (A  @  B)))



Date html generated: 2015_07_21-PM-03_39_13
Last ObjectModification: 2015_01_27-PM-06_31_02

Home Index