Nuprl Lemma : iseg-remainder-as-filter
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[sa,s,sb:T List].
(∀[dR:T ⟶ T ⟶ 𝔹]
(sb = filter(dR last(sa);s) ∈ (T List)) supposing ((¬↑null(sa)) and (∀x,y:T. (↑(dR x y)
⇐⇒ R x y)))) supposing
(Trans(T;a,b.R a b) and
sorted-by(R;s) and
(s = (sa @ sb) ∈ (T List)) and
AntiSym(T;x,y.R x y) and
Irrefl(T;x,y.R x y))
Proof
Definitions occuring in Statement :
sorted-by: sorted-by(R;L)
,
last: last(L)
,
null: null(as)
,
filter: filter(P;l)
,
append: as @ bs
,
list: T List
,
irrefl: Irrefl(T;x,y.E[x; y])
,
anti_sym: AntiSym(T;x,y.R[x; y])
,
trans: Trans(T;x,y.E[x; y])
,
assert: ↑b
,
bool: 𝔹
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
not: ¬A
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
implies: P
⇒ Q
,
iseg: l1 ≤ l2
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
top: Top
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
not: ¬A
,
false: False
,
guard: {T}
,
irrefl: Irrefl(T;x,y.E[x; y])
,
set-equal: set-equal(T;x;y)
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
cand: A c∧ B
,
or: P ∨ Q
,
l_member: (x ∈ l)
,
squash: ↓T
,
int_seg: {i..j-}
,
nat: ℕ
,
lelt: i ≤ j < k
,
ge: i ≥ j
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
less_than: a < b
,
true: True
,
subtract: n - m
,
sq_type: SQType(T)
,
uiff: uiff(P;Q)
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
cons: [a / b]
,
bfalse: ff
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
last: last(L)
,
sorted-by: sorted-by(R;L)
,
anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced :
member-iseg-sorted-by,
equal_wf,
list_wf,
append_wf,
not_wf,
assert_wf,
null_wf3,
subtype_rel_list,
top_wf,
all_wf,
iff_wf,
bool_wf,
trans_wf,
sorted-by_wf,
subtype_rel_dep_function,
l_member_wf,
subtype_rel_self,
set_wf,
anti_sym_wf,
irrefl_wf,
sorted-by-strict-unique,
filter_wf5,
last_wf,
member_filter,
member_append,
squash_wf,
true_wf,
select_append_back,
length_wf,
nat_properties,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermVar_wf,
itermAdd_wf,
itermConstant_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
lelt_wf,
iff_weakening_equal,
add-associates,
minus-one-mul,
add-swap,
add-mul-special,
zero-mul,
add-zero,
subtype_base_sq,
int_subtype_base,
select_wf,
add_nat_wf,
length_wf_nat,
nat_wf,
add-is-int-iff,
intformeq_wf,
int_formula_prop_eq_lemma,
false_wf,
length-append,
less_than_wf,
list-cases,
length_of_nil_lemma,
null_nil_lemma,
product_subtype_list,
length_of_cons_lemma,
null_cons_lemma,
not-lt-2,
condition-implies-le,
minus-add,
zero-add,
minus-one-mul-top,
add-commutes,
add_functionality_wrt_le,
le-add-cancel,
subtract_wf,
itermSubtract_wf,
int_term_value_subtract_lemma,
select_append_front,
and_wf,
sorted-by-filter,
sublist_append2,
sublist_wf,
sublist-sorted-by
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
dependent_functionElimination,
independent_isectElimination,
independent_functionElimination,
dependent_pairFormation,
cumulativity,
applyEquality,
lambdaEquality,
isect_memberEquality,
voidElimination,
voidEquality,
because_Cache,
sqequalRule,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionExtensionality,
functionEquality,
instantiate,
universeEquality,
setEquality,
setElimination,
rename,
lambdaFormation,
addLevel,
productElimination,
independent_pairFormation,
impliesFunctionality,
andLevelFunctionality,
productEquality,
inrFormation,
hyp_replacement,
applyLambdaEquality,
dependent_set_memberEquality,
imageElimination,
addEquality,
unionElimination,
natural_numberEquality,
int_eqEquality,
intEquality,
computeAll,
imageMemberEquality,
baseClosed,
pointwiseFunctionality,
promote_hyp,
baseApply,
closedConclusion,
hypothesis_subsumption,
minusEquality
Latex:
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. \mforall{}[sa,s,sb:T List].
(\mforall{}[dR:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbB{}]
(sb = filter(dR last(sa);s)) supposing
((\mneg{}\muparrow{}null(sa)) and
(\mforall{}x,y:T. (\muparrow{}(dR x y) \mLeftarrow{}{}\mRightarrow{} R x y)))) supposing
(Trans(T;a,b.R a b) and
sorted-by(R;s) and
(s = (sa @ sb)) and
AntiSym(T;x,y.R x y) and
Irrefl(T;x,y.R x y))
Date html generated:
2018_05_21-PM-06_47_12
Last ObjectModification:
2017_07_26-PM-04_56_33
Theory : general
Home
Index