Nuprl Lemma : loc-on-path-decomp

[Info:Type]
  ∀es:EO+(Info). ∀Sys:EClass(Top). ∀L:E(Sys) List. ∀j:Id.
    (loc-on-path(es;j;L)
     (∃u:E(Sys)
         ∃A,B:E(Sys) List. ((loc(u) j ∈ Id) ∧ (L (A [u B]) ∈ (E(Sys) List)) ∧ loc-on-path(es;j;A)))))


Proof




Definitions occuring in Statement :  es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) loc-on-path: loc-on-path(es;i;L) es-loc: loc(e) Id: Id append: as bs cons: [a b] list: List uall: [x:A]. B[x] top: Top all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q universe: Type equal: t ∈ T
Lemmas :  list_induction all_wf Id_wf loc-on-path_wf event-ordering+_subtype subtype_rel_list es-E_wf exists_wf es-loc_wf append_wf cons_wf length_wf length-append not_wf list_wf es-E-interface_wf eclass_wf top_wf event-ordering+_wf nil_wf loc-on-path-nil loc-on-path-cons decidable__equal_Id list_ind_nil_lemma length_of_cons_lemma nil-append list_ind_cons_lemma true_wf squash_wf
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}Sys:EClass(Top).  \mforall{}L:E(Sys)  List.  \mforall{}j:Id.
        (loc-on-path(es;j;L)
        {}\mRightarrow{}  (\mexists{}u:E(Sys).  \mexists{}A,B:E(Sys)  List.  ((loc(u)  =  j)  \mwedge{}  (L  =  (A  @  [u  /  B]))  \mwedge{}  (\mneg{}loc-on-path(es;j;A)))))



Date html generated: 2015_07_17-PM-01_01_49
Last ObjectModification: 2015_07_16-AM-09_43_29

Home Index