Nuprl Lemma : map-class_functionality

[Info,T,A,B:Type]. ∀[f:A ─→ T]. ∀[g:B ─→ T]. ∀[X:EClass(A)]. ∀[Y:EClass(B)].
  (f[a] where from X) (g[b] where from Y) ∈ EClass(T) 
  supposing ∀es:EO+(Info). ∀e:E.  ((↑e ∈b ⇐⇒ ↑e ∈b Y) ∧ ((↑e ∈b X)  (↑e ∈b Y)  (f[X(e)] g[Y(e)] ∈ T)))


Proof




Definitions occuring in Statement :  map-class: (f[v] where from X) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  es-interface-extensionality map-class_wf is-map-class es-interface-subtype_rel2 es-E_wf event-ordering+_subtype es-E-interface-property assert_wf in-eclass_wf top_wf all_wf event-ordering+_wf iff_wf eclass-val_wf eclass_wf map-class-val bool_wf eqtt_to_assert bag_size_single_lemma false_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bag_size_empty_lemma
\mforall{}[Info,T,A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  T].  \mforall{}[g:B  {}\mrightarrow{}  T].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].
    (f[a]  where  a  from  X)  =  (g[b]  where  b  from  Y) 
    supposing  \mforall{}es:EO+(Info).  \mforall{}e:E.
                            ((\muparrow{}e  \mmember{}\msubb{}  X  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e  \mmember{}\msubb{}  Y)  \mwedge{}  ((\muparrow{}e  \mmember{}\msubb{}  X)  {}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  Y)  {}\mRightarrow{}  (f[X(e)]  =  g[Y(e)])))



Date html generated: 2015_07_17-PM-01_08_37
Last ObjectModification: 2015_01_27-PM-10_36_33

Home Index