Nuprl Lemma : es-interface-extensionality

[Info,A:Type]. ∀[X,Y:EClass(A)].
  (X Y ∈ EClass(A)) supposing 
     ((∀es:EO+(Info). ∀e:E.  ((↑e ∈b X)  (↑e ∈b Y)  (X(e) Y(e) ∈ A))) and 
     (∀es:EO+(Info). ∀e:E.  (↑e ∈b ⇐⇒ ↑e ∈b Y)) and 
     Singlevalued(X) and 
     Singlevalued(Y))


Proof




Definitions occuring in Statement :  sv-class: Singlevalued(X) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q universe: Type equal: t ∈ T
Lemmas :  es-E_wf event-ordering+_subtype all_wf event-ordering+_wf assert_wf in-eclass_wf dep-eclass_subtype_rel top_wf eclass-val_wf iff_wf sv-class_wf eclass_wf bag_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int bag-only_wf2 single-valued-bag-if-le1 decidable__lt false_wf le_antisymmetry_iff add_functionality_wrt_le add-zero le-add-cancel add-commutes zero-add eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int bag-size_wf nequal-le-implies equal-wf-base-T true_wf nat_wf le_wf bag-size-one bag_only_single_lemma and_wf single-bag_wf decidable__le not-le-2 condition-implies-le minus-add minus-one-mul add-swap add-associates minus-zero le-add-cancel2 empty-bag_wf bag-size-zero
\mforall{}[Info,A:Type].  \mforall{}[X,Y:EClass(A)].
    (X  =  Y)  supposing 
          ((\mforall{}es:EO+(Info).  \mforall{}e:E.    ((\muparrow{}e  \mmember{}\msubb{}  X)  {}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  Y)  {}\mRightarrow{}  (X(e)  =  Y(e))))  and 
          (\mforall{}es:EO+(Info).  \mforall{}e:E.    (\muparrow{}e  \mmember{}\msubb{}  X  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e  \mmember{}\msubb{}  Y))  and 
          Singlevalued(X)  and 
          Singlevalued(Y))



Date html generated: 2015_07_17-PM-00_46_54
Last ObjectModification: 2015_01_27-PM-11_09_37

Home Index