Nuprl Lemma : bag-size-one
∀[T:Type]. ∀[bs:bag(T)]. bs ~ {only(bs)} supposing #(bs) = 1 ∈ ℤ
Proof
Definitions occuring in Statement :
bag-only: only(bs)
,
bag-size: #(bs)
,
single-bag: {x}
,
bag: bag(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
natural_number: $n
,
int: ℤ
,
universe: Type
,
sqequal: s ~ t
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
or: P ∨ Q
,
bag-only: only(bs)
,
single-bag: {x}
,
bag-size: #(bs)
,
sq_type: SQType(T)
,
guard: {T}
,
true: True
,
false: False
,
prop: ℙ
,
cons: [a / b]
,
top: Top
,
ge: i ≥ j
,
le: A ≤ B
,
and: P ∧ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
nat: ℕ
Lemmas referenced :
bag-subtype-list,
list_wf,
top_wf,
list-cases,
length_of_nil_lemma,
subtype_base_sq,
int_subtype_base,
false_wf,
equal-wf-base,
product_subtype_list,
length_of_cons_lemma,
reduce_hd_cons_lemma,
non_neg_length,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformeq_wf,
itermAdd_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
int_formula_prop_wf,
equal-wf-T-base,
length_wf,
equal_wf,
bag-size_wf,
nat_wf,
bag_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
hypothesisEquality,
applyEquality,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
hypothesis,
sqequalRule,
isectElimination,
lambdaFormation,
unionElimination,
addLevel,
instantiate,
cumulativity,
intEquality,
independent_isectElimination,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
natural_numberEquality,
voidElimination,
levelHypothesis,
promote_hyp,
because_Cache,
baseClosed,
hypothesis_subsumption,
productElimination,
isect_memberEquality,
voidEquality,
rename,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
independent_pairFormation,
computeAll,
addEquality,
sqequalAxiom,
setElimination,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[bs:bag(T)]. bs \msim{} \{only(bs)\} supposing \#(bs) = 1
Date html generated:
2017_10_01-AM-08_52_27
Last ObjectModification:
2017_07_26-PM-04_34_01
Theory : bags
Home
Index