Nuprl Lemma : bag-size-one

[T:Type]. ∀[bs:bag(T)].  bs {only(bs)} supposing #(bs) 1 ∈ ℤ


Proof




Definitions occuring in Statement :  bag-only: only(bs) bag-size: #(bs) single-bag: {x} bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n int: universe: Type sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B all: x:A. B[x] implies:  Q or: P ∨ Q bag-only: only(bs) single-bag: {x} bag-size: #(bs) sq_type: SQType(T) guard: {T} true: True false: False prop: cons: [a b] top: Top ge: i ≥  le: A ≤ B and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A nat:
Lemmas referenced :  bag-subtype-list list_wf top_wf list-cases length_of_nil_lemma subtype_base_sq int_subtype_base false_wf equal-wf-base product_subtype_list length_of_cons_lemma reduce_hd_cons_lemma non_neg_length satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf equal-wf-T-base length_wf equal_wf bag-size_wf nat_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin hypothesisEquality applyEquality extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesis sqequalRule isectElimination lambdaFormation unionElimination addLevel instantiate cumulativity intEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination natural_numberEquality voidElimination levelHypothesis promote_hyp because_Cache baseClosed hypothesis_subsumption productElimination isect_memberEquality voidEquality rename dependent_pairFormation lambdaEquality int_eqEquality independent_pairFormation computeAll addEquality sqequalAxiom setElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    bs  \msim{}  \{only(bs)\}  supposing  \#(bs)  =  1



Date html generated: 2017_10_01-AM-08_52_27
Last ObjectModification: 2017_07_26-PM-04_34_01

Theory : bags


Home Index