Nuprl Lemma : map-pair-prior

[Info,A,B,C,D:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[f:(A × B) ─→ C]. ∀[g:(A × D) ─→ C]. ∀[h:B ─→ D].
  (f[p] where from X;Y) (g[p] where from X;(h[y] where from Y)) ∈ EClass(C) 
  supposing ∀a:A. ∀b:B.  (f[<a, b>g[<a, h[b]>] ∈ C)


Proof




Definitions occuring in Statement :  es-interface-pair-prior: X;Y map-class: (f[v] where from X) eclass: EClass(A[eo; e]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ─→ B[x] pair: <a, b> product: x:A × B[x] universe: Type equal: t ∈ T
Lemmas :  es-interface-extensionality map-class_wf es-interface-pair-prior_wf in-eclass_wf bool_wf eqtt_to_assert bag_size_single_lemma false_wf eqff_to_assert es-interface-subtype_rel2 es-E_wf event-ordering+_subtype top_wf subtype_top equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bag_size_empty_lemma assert_wf all_wf eclass_wf event-ordering+_wf is-map-class eclass-val_wf es-prior-val_wf iff_weakening_equal is-pair-prior map-class-val pair-prior-val

Latex:
\mforall{}[Info,A,B,C,D:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[f:(A  \mtimes{}  B)  {}\mrightarrow{}  C].  \mforall{}[g:(A  \mtimes{}  D)  {}\mrightarrow{}  C].
\mforall{}[h:B  {}\mrightarrow{}  D].
    (f[p]  where  p  from  X;Y)  =  (g[p]  where  p  from  X;(h[y]  where  y  from  Y)) 
    supposing  \mforall{}a:A.  \mforall{}b:B.    (f[<a,  b>]  =  g[<a,  h[b]>])



Date html generated: 2015_07_21-PM-03_47_52
Last ObjectModification: 2015_02_04-PM-06_11_15

Home Index