Nuprl Lemma : mapfilter-class_functionality

[Info,A1,A2,B:Type]. ∀[P1:A1 ─→ 𝔹]. ∀[P2:A2 ─→ 𝔹]. ∀[f1:A1 ─→ B]. ∀[f2:A2 ─→ B]. ∀[X1:EClass(A1)]. ∀[X2:EClass(A2)].
  (f1[v] where from X1 such that P1[v]) (f2[v] where from X2 such that P2[v]) ∈ EClass(B) 
  supposing ∀es:EO+(Info). ∀e:E.
              ((↑e ∈b X1 ⇐⇒ ↑e ∈b X2)
              ∧ ((↑e ∈b X1)
                 (↑e ∈b X2)
                 ((↑P1[X1(e)] ⇐⇒ ↑P2[X2(e)]) ∧ ((↑P1[X1(e)])  (↑P2[X2(e)])  (f1[X1(e)] f2[X2(e)] ∈ B)))))


Proof




Definitions occuring in Statement :  mapfilter-class: (f[v] where from such that P[v]) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  es-interface-extensionality mapfilter-class_wf is-mapfilter-class es-E-interface-property es-interface-subtype_rel2 es-E_wf event-ordering+_subtype assert_wf in-eclass_wf top_wf all_wf event-ordering+_wf iff_wf eclass-val_wf eclass_wf bool_wf mapfilter-class-val eqtt_to_assert bag_size_single_lemma false_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bag_size_empty_lemma
\mforall{}[Info,A1,A2,B:Type].  \mforall{}[P1:A1  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[P2:A2  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f1:A1  {}\mrightarrow{}  B].  \mforall{}[f2:A2  {}\mrightarrow{}  B].  \mforall{}[X1:EClass(A1)].
\mforall{}[X2:EClass(A2)].
    (f1[v]  where  v  from  X1  such  that  P1[v])  =  (f2[v]  where  v  from  X2  such  that  P2[v]) 
    supposing  \mforall{}es:EO+(Info).  \mforall{}e:E.
                            ((\muparrow{}e  \mmember{}\msubb{}  X1  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e  \mmember{}\msubb{}  X2)
                            \mwedge{}  ((\muparrow{}e  \mmember{}\msubb{}  X1)
                                {}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  X2)
                                {}\mRightarrow{}  ((\muparrow{}P1[X1(e)]  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}P2[X2(e)])
                                      \mwedge{}  ((\muparrow{}P1[X1(e)])  {}\mRightarrow{}  (\muparrow{}P2[X2(e)])  {}\mRightarrow{}  (f1[X1(e)]  =  f2[X2(e)])))))



Date html generated: 2015_07_17-PM-01_07_49
Last ObjectModification: 2015_01_27-PM-10_39_26

Home Index