Nuprl Lemma : subtype-fpf-cap-void

[T,X:Type]. ∀[eq:EqDecider(X)]. ∀[f,g:x:X fp-> Type]. ∀[x:X].  f(x)?Void ⊆g(x)?T supposing f ⊆ g


Proof




Definitions occuring in Statement :  fpf-sub: f ⊆ g fpf-cap: f(x)?z fpf: a:A fp-> B[a] deq: EqDecider(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] void: Void universe: Type
Lemmas :  l_member_wf subtype_base_sq fpf_wf list_subtype_base list_wf product_subtype_base fpf-cap_wf deq_wf fpf-sub_wf squash_wf true_wf subtype_rel-equal bool_wf eqtt_to_assert assert_wf not_wf uiff_transitivity eqff_to_assert assert_of_bnot fpf-dom_wf top_wf subtype-fpf2 subtype_top equal-wf-base equal-wf-base-T equal-wf-T-base bnot_wf fpf-ap_wf
\mforall{}[T,X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[f,g:x:X  fp->  Type].  \mforall{}[x:X].    f(x)?Void  \msubseteq{}r  g(x)?T  supposing  f  \msubseteq{}  g



Date html generated: 2015_07_17-AM-09_17_57
Last ObjectModification: 2015_01_28-AM-07_51_25

Home Index