Nuprl Lemma : subtype-fpf-cap-void2

[X:Type]. ∀[eq:EqDecider(X)]. ∀[f,g:x:X fp-> Type]. ∀[x:X]. ∀[z:g(x)?Void].  f(x)?Void ⊆g(x)?Void supposing || g


Proof




Definitions occuring in Statement :  fpf-compatible: || g fpf-cap: f(x)?z fpf: a:A fp-> B[a] deq: EqDecider(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] void: Void universe: Type
Lemmas :  fpf-dom_wf subtype-fpf2 top_wf subtype_top bool_wf equal-wf-T-base assert_wf bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot fpf-ap_wf iff_weakening_equal subtype_rel_wf bool_cases subtype_base_sq bool_subtype_base
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[f,g:x:X  fp->  Type].  \mforall{}[x:X].  \mforall{}[z:g(x)?Void].
    f(x)?Void  \msubseteq{}r  g(x)?Void  supposing  f  ||  g



Date html generated: 2015_07_17-AM-09_18_48
Last ObjectModification: 2015_02_04-PM-05_07_05

Home Index