Nuprl Lemma : class-at-program-eq-hdf

[A,B:Type]. ∀[pr1,pr2:Id ─→ hdataflow(A;B)]. ∀[locs:bag(Id)].
  ((pr1)@locs (pr2)@locs ∈ (Id ─→ hdataflow(A;B))) supposing 
     ((pr1 pr2 ∈ (Id ─→ hdataflow(A;B))) and 
     valueall-type(B))


Proof




Definitions occuring in Statement :  class-at-program: (pr)@locs Id: Id valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] function: x:A ─→ B[x] universe: Type equal: t ∈ T bag: bag(T) hdataflow: hdataflow(A;B)
Lemmas :  bag-deq-member_wf id-deq_wf bool_wf eqtt_to_assert assert-bag-deq-member and_wf equal_wf Id_wf hdataflow_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bag-member_wf hdf-halt_wf valueall-type_wf bag_wf

Latex:
\mforall{}[A,B:Type].  \mforall{}[pr1,pr2:Id  {}\mrightarrow{}  hdataflow(A;B)].  \mforall{}[locs:bag(Id)].
    ((pr1)@locs  =  (pr2)@locs)  supposing  ((pr1  =  pr2)  and  valueall-type(B))



Date html generated: 2015_07_22-PM-00_04_00
Last ObjectModification: 2015_01_28-AM-09_53_19

Home Index