Nuprl Lemma : parallel-bind-program-eq
∀[Info,B,C:Type]. ∀[X1,X2:Id ─→ hdataflow(Info;B)]. ∀[X:B ─→ Id ─→ hdataflow(Info;C)].
  (X1 >>= X || X2 >>= X = X1 || X2 >>= X ∈ (Id ─→ hdataflow(Info;C))) supposing (valueall-type(C) and valueall-type(B))
Proof
Definitions occuring in Statement : 
parallel-class-program: X || Y
, 
bind-class-program: xpr >>= ypr
, 
Id: Id
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
hdataflow: hdataflow(A;B)
Lemmas : 
local-class-equality, 
bind-class_wf, 
parallel-class_wf, 
hdataflow-class_wf, 
sq_exists_subtype_rel, 
Id_wf, 
hdataflow_wf, 
all_wf, 
es-E_wf, 
event-ordering+_subtype, 
equal_wf, 
bag_wf, 
class-ap_wf, 
hdf-ap_wf, 
iterate-hdataflow_wf, 
es-loc_wf, 
map_wf, 
es-info_wf, 
es-before_wf, 
squash_wf, 
true_wf, 
eclass_wf, 
event-ordering+_wf, 
parallel-class-bind-left, 
iff_weakening_equal, 
bind-class-program_wf, 
parallel-class-program_wf, 
hdf-parallel-bind-halt-eq, 
list_wf, 
valueall-type_wf, 
pi2_wf
Latex:
\mforall{}[Info,B,C:Type].  \mforall{}[X1,X2:Id  {}\mrightarrow{}  hdataflow(Info;B)].  \mforall{}[X:B  {}\mrightarrow{}  Id  {}\mrightarrow{}  hdataflow(Info;C)].
    (X1  >>=  X  ||  X2  >>=  X  =  X1  ||  X2  >>=  X)  supposing  (valueall-type(C)  and  valueall-type(B))
Date html generated:
2015_07_22-PM-00_05_53
Last ObjectModification:
2015_02_04-PM-05_10_38
Home
Index