Nuprl Lemma : local-class-equality

[Info,A:Type]. ∀[X:EClass(A)].
  ∀p,q:LocalClass(X).
    q ∈ (Id ─→ hdataflow(Info;A)) 
    supposing ∀i:Id. ∀inputs:Info List.  hdf-halted(p i*(inputs)) hdf-halted(q i*(inputs))


Proof




Definitions occuring in Statement :  local-class: LocalClass(X) eclass: EClass(A[eo; e]) Id: Id list: List bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ─→ B[x] universe: Type equal: t ∈ T iterate-hdataflow: P*(inputs) hdf-halted: hdf-halted(P) hdataflow: hdataflow(A;B)
Lemmas :  hdataflow-equal bool_wf hdf-halted_wf iterate-hdataflow_wf iff_weakening_equal list_wf Id_wf all_wf equal_wf local-class_wf eclass_wf es-E_wf event-ordering+_subtype event-ordering+_wf subtype_base_sq atom2_subtype_base bag_wf hdf-out_wf list2extended-eo assert_of_lt_int length_wf length_nil non_neg_length nil_wf length_wf_nil length_wf_nat length_cons length_append subtype_rel_list top_wf assert_wf lt_int_wf es-loc_wf map_wf es-info_wf es-before_wf length-map exists_wf map_append cons_wf map_cons_lemma map_nil_lemma general-append-cancellation length_of_cons_lemma length_of_nil_lemma hd_wf listp_properties list-cases cons_neq_nil product_subtype_list nat_wf decidable__lt false_wf condition-implies-le minus-add minus-one-mul zero-add add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel set_wf reduce_hd_cons_lemma tl_wf reduce_tl_cons_lemma

Latex:
\mforall{}[Info,A:Type].  \mforall{}[X:EClass(A)].
    \mforall{}p,q:LocalClass(X).
        p  =  q  supposing  \mforall{}i:Id.  \mforall{}inputs:Info  List.    hdf-halted(p  i*(inputs))  =  hdf-halted(q  i*(inputs))



Date html generated: 2015_07_21-PM-04_46_38
Last ObjectModification: 2015_02_04-PM-05_58_03

Home Index