Nuprl Lemma : eo_record_cumulative

eo_record{i:l}() ⊆eo_record{j:l} supposing Type ⊆r 𝕌{j}


Proof




Definitions occuring in Statement :  eo_record: eo_record{i:l}() uimplies: supposing a subtype_rel: A ⊆B universe: Type
Lemmas :  subtype_rel_self bool_wf Id_wf nat_wf eq_atom_wf uiff_transitivity equal-wf-base atom_subtype_base assert_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot subtype_rel_dep_function subtype_rel_transitivity eo_record_wf subtype_rel_wf
eo\_record\{i:l\}()  \msubseteq{}r  eo\_record\{j:l\}  supposing  Type  \msubseteq{}r  \mBbbU{}\{j\}



Date html generated: 2015_07_17-AM-08_33_42
Last ObjectModification: 2015_01_27-PM-03_00_06

Home Index