Nuprl Lemma : eo_record_cumulative
eo_record{i:l}() ⊆r eo_record{j:l} supposing Type ⊆r 𝕌{j}
Proof
Definitions occuring in Statement : 
eo_record: eo_record{i:l}()
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
universe: Type
Lemmas : 
subtype_rel_self, 
bool_wf, 
Id_wf, 
nat_wf, 
eq_atom_wf, 
uiff_transitivity, 
equal-wf-base, 
atom_subtype_base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
subtype_rel_dep_function, 
subtype_rel_transitivity, 
eo_record_wf, 
subtype_rel_wf
eo\_record\{i:l\}()  \msubseteq{}r  eo\_record\{j:l\}  supposing  Type  \msubseteq{}r  \mBbbU{}\{j\}
Date html generated:
2015_07_17-AM-08_33_42
Last ObjectModification:
2015_01_27-PM-03_00_06
Home
Index