Nuprl Lemma : last-decidable

es:EO. ∀e:E.
  ∀[P:{a:E| loc(a) loc(e) ∈ Id}  ─→ ℙ]
    ((∀a:{a:E| loc(a) loc(e) ∈ Id} Dec(P[a]))
     (∀e'≤e.P[e'] ⇐⇒ P[e] ∨ ∃e'≤e.(¬(P[e'] ⇐⇒ P[e])) ∧ ∀e''∈(e',e].P[e''] ⇐⇒ P[e]))


Proof




Definitions occuring in Statement :  alle-between3: e∈(e1,e2].P[e] alle-le: e≤e'.P[e] existse-le: e≤e'.P[e] es-loc: loc(e) es-E: E event_ordering: EO Id: Id decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ─→ B[x] equal: t ∈ T
Lemmas :  all_wf Id_wf es-loc_wf decidable_wf es-E_wf event_ordering_wf btrue_wf bfalse_wf equal_wf set_wf iff_wf bool_wf equal-wf-base btrue_neq_bfalse ppcc-problem unit_wf2 iff_imp_equal_bool true_wf false_wf iff_weakening_equal last-transition exists_wf es-le_wf not_wf es-le-loc es-locl_wf
\mforall{}es:EO.  \mforall{}e:E.
    \mforall{}[P:\{a:E|  loc(a)  =  loc(e)\}    {}\mrightarrow{}  \mBbbP{}]
        ((\mforall{}a:\{a:E|  loc(a)  =  loc(e)\}  .  Dec(P[a]))
        {}\mRightarrow{}  (\mforall{}e'\mleq{}e.P[e']  \mLeftarrow{}{}\mRightarrow{}  P[e]  \mvee{}  \mexists{}e'\mleq{}e.(\mneg{}(P[e']  \mLeftarrow{}{}\mRightarrow{}  P[e]))  \mwedge{}  \mforall{}e''\mmember{}(e',e].P[e'']  \mLeftarrow{}{}\mRightarrow{}  P[e]))



Date html generated: 2015_07_17-AM-08_51_12
Last ObjectModification: 2015_02_04-PM-05_56_25

Home Index