Nuprl Lemma : norm-system_wf
∀[M:Type ─→ Type]. norm-system ∈ id-fun(System(P.M[P])) supposing M[Top]
Proof
Definitions occuring in Statement : 
norm-system: norm-system
, 
System: System(P.M[P])
, 
id-fun: id-fun(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
norm-pair_wf, 
list_wf, 
component_wf, 
ldag_wf, 
pInTransit_wf, 
list-value-type, 
set-value-type, 
labeled-graph_wf, 
is-dag_wf, 
norm-components_wf, 
top_wf, 
dep-isect-value-type, 
int_seg_wf, 
length_wf, 
all_wf, 
value-type_wf, 
id-fun-set, 
norm-lg_wf, 
product-value-type, 
Id_wf, 
pCom_wf
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  norm-system  \mmember{}  id-fun(System(P.M[P]))  supposing  M[Top]
Date html generated:
2015_07_23-AM-11_08_28
Last ObjectModification:
2015_01_29-AM-00_08_58
Home
Index