Nuprl Lemma : norm-system_wf

[M:Type ─→ Type]. norm-system ∈ id-fun(System(P.M[P])) supposing M[Top]


Proof




Definitions occuring in Statement :  norm-system: norm-system System: System(P.M[P]) id-fun: id-fun(T) uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  norm-pair_wf list_wf component_wf ldag_wf pInTransit_wf list-value-type set-value-type labeled-graph_wf is-dag_wf norm-components_wf top_wf dep-isect-value-type int_seg_wf length_wf all_wf value-type_wf id-fun-set norm-lg_wf product-value-type Id_wf pCom_wf

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  norm-system  \mmember{}  id-fun(System(P.M[P]))  supposing  M[Top]



Date html generated: 2015_07_23-AM-11_08_28
Last ObjectModification: 2015_01_29-AM-00_08_58

Home Index