Nuprl Lemma : run-intransit_wf

[M:Type ─→ Type]. ∀[r:pRunType(P.M[P])]. ∀[t:ℕ+].  (run-intransit(r;t) ∈ LabeledDAG(pInTransit(P.M[P])))


Proof




Definitions occuring in Statement :  run-intransit: run-intransit(r;t) pRunType: pRunType(T.M[T]) pInTransit: pInTransit(P.M[P]) ldag: LabeledDAG(T) nat_plus: + uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf Id_wf pMsg_wf unit_wf2 top_wf ldag_wf pInTransit_wf nat_plus_wf nat_wf

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:pRunType(P.M[P])].  \mforall{}[t:\mBbbN{}\msupplus{}].
    (run-intransit(r;t)  \mmember{}  LabeledDAG(pInTransit(P.M[P])))



Date html generated: 2015_07_23-AM-11_10_20
Last ObjectModification: 2015_01_29-AM-00_08_21

Home Index