Nuprl Lemma : run-intransit_wf
∀[M:Type ─→ Type]. ∀[r:pRunType(P.M[P])]. ∀[t:ℕ+].  (run-intransit(r;t) ∈ LabeledDAG(pInTransit(P.M[P])))
Proof
Definitions occuring in Statement : 
run-intransit: run-intransit(r;t)
, 
pRunType: pRunType(T.M[T])
, 
pInTransit: pInTransit(P.M[P])
, 
ldag: LabeledDAG(T)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
subtract_wf, 
decidable__le, 
false_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
le_wf, 
Id_wf, 
pMsg_wf, 
unit_wf2, 
top_wf, 
ldag_wf, 
pInTransit_wf, 
nat_plus_wf, 
nat_wf
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:pRunType(P.M[P])].  \mforall{}[t:\mBbbN{}\msupplus{}].
    (run-intransit(r;t)  \mmember{}  LabeledDAG(pInTransit(P.M[P])))
Date html generated:
2015_07_23-AM-11_10_20
Last ObjectModification:
2015_01_29-AM-00_08_21
Home
Index