Nuprl Lemma : run-intransit_wf
∀[M:Type ─→ Type]. ∀[r:pRunType(P.M[P])]. ∀[t:ℕ+]. (run-intransit(r;t) ∈ LabeledDAG(pInTransit(P.M[P])))
Proof
Definitions occuring in Statement :
run-intransit: run-intransit(r;t)
,
pRunType: pRunType(T.M[T])
,
pInTransit: pInTransit(P.M[P])
,
ldag: LabeledDAG(T)
,
nat_plus: ℕ+
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ─→ B[x]
,
universe: Type
Lemmas :
subtract_wf,
decidable__le,
false_wf,
not-le-2,
less-iff-le,
condition-implies-le,
minus-one-mul,
zero-add,
minus-add,
minus-minus,
add-associates,
add-swap,
add-commutes,
add_functionality_wrt_le,
add-zero,
le-add-cancel,
le_wf,
Id_wf,
pMsg_wf,
unit_wf2,
top_wf,
ldag_wf,
pInTransit_wf,
nat_plus_wf,
nat_wf
Latex:
\mforall{}[M:Type {}\mrightarrow{} Type]. \mforall{}[r:pRunType(P.M[P])]. \mforall{}[t:\mBbbN{}\msupplus{}].
(run-intransit(r;t) \mmember{} LabeledDAG(pInTransit(P.M[P])))
Date html generated:
2015_07_23-AM-11_10_20
Last ObjectModification:
2015_01_29-AM-00_08_21
Home
Index