Nuprl Lemma : ma-ring-property2

R:Id List. s:{i:Id| (i  R)}   {i:Id| (i  R)} . i:Id.
  (ma-ring(R;s)
   (i  R)
   (R':Id List
       (l_eqset(Id;R';R)
        ma-ring(R';s)
        (i = hd(R'))
        (j:||R'|| - 1. ((s R'[j]) = R'[j + 1]))
        ((s R'[||R'|| - 1]) = R'[0])
        no_repeats(Id;R'))))


Proof not projected




Definitions occuring in Statement :  ma-ring: ma-ring(R;s) l_eqset: l_eqset(T;L1;L2) Id: Id select: l[i] hd: hd(l) length: ||as|| int_seg: {i..j} all: x:A. B[x] exists: x:A. B[x] implies: P  Q and: P  Q set: {x:A| B[x]}  apply: f a function: x:A  B[x] list: type List subtract: n - m add: n + m natural_number: $n equal: s = t no_repeats: no_repeats(T;l) listp: A List l_member: (x  l)
Lemmas :  listp_properties intensional-universe_wf l_member_subtype select_member ma-ring-no-repeats-listify ma-ring-remove-repeats-id fun_exp_add1-sq squash_wf fun_exp_add1 select-as-hd pos-length equal-nil-sq-nil l_member_length ma-ring-remove-repeats-eq-set-listify subtype_rel_wf deq_wf top_wf bool_wf select_listify_id non_neg_length strong-subtype-deq-subtype strong-subtype_wf nat_properties subtype_rel_list rev_implies_wf subtype_base_sq atom2_subtype_base int_subtype_base fun_exp_set_l_member iff_wf nat_wf inject_wf hd_wf length_wf_nat select_wf not_wf uall_wf ge_wf pos_length3 int_seg_properties member_wf no_repeats-settype assert_wf listify_length member_null pos_length2 listify_wf fun_exp_wf le_wf length_wf assert_of_lt_int non_nil_length l_member_non_nil member-remove-repeats true_wf lt_int_wf ifthenelse_wf false_wf id-deq_wf remove-repeats_wf no_repeats_wf int_seg_wf l_eqset_wf ma-ring_wf l_member_wf Id_wf

\mforall{}R:Id  List.  \mforall{}s:\{i:Id|  (i  \mmember{}  R)\}    {}\mrightarrow{}  \{i:Id|  (i  \mmember{}  R)\}  .  \mforall{}i:Id.
    (ma-ring(R;s)
    {}\mRightarrow{}  (i  \mmember{}  R)
    {}\mRightarrow{}  (\mexists{}R':Id  List\msupplus{}
              (l\_eqset(Id;R';R)
              \mwedge{}  ma-ring(R';s)
              \mwedge{}  (i  =  hd(R'))
              \mwedge{}  (\mforall{}j:\mBbbN{}||R'||  -  1.  ((s  R'[j])  =  R'[j  +  1]))
              \mwedge{}  ((s  R'[||R'||  -  1])  =  R'[0])
              \mwedge{}  no\_repeats(Id;R'))))


Date html generated: 2012_02_20-PM-05_58_49
Last ObjectModification: 2012_02_02-PM-02_30_28

Home Index