Nuprl Lemma : SM-gen-class-du_wf

[Info,S:Type]. [n:]. [m:n + 1]. [A:k:{m..n + 1}  Type].
[trXs:k:{m..n + 1}  (Id  A k  S  S  EClass(A k))]. [init:Id  bag(S)].
  (SM-gen-class-du(init;n;m;trXs)  Id  disjoint-union-type(listify(A;m;n + 1))  S  S
                                     EClass(disjoint-union-type(listify(A;m;n + 1))))


Proof not projected




Definitions occuring in Statement :  SM-gen-class-du: SM-gen-class-du(init;n;m;trXs) disjoint-union-type: disjoint-union-type(L) eclass: EClass(A[eo; e]) Id: Id listify: listify(f;m;n) int_seg: {i..j} nat: uall: [x:A]. B[x] member: t  T apply: f a function: x:A  B[x] product: x:A  B[x] add: n + m natural_number: $n universe: Type bag: bag(T)
Definitions :  member: t  T exists: x:A. B[x] prop: so_lambda: x y.t[x; y] all: x:A. B[x] implies: P  Q le: A  B not: A false: False ge: i  j  int_seg: {i..j} disjoint-union-type: disjoint-union-type(L) listify: listify(f;m;n) SM-gen-class-du: SM-gen-class-du(init;n;m;trXs) ycomb: Y ifthenelse: if b then t else f fi  btrue: tt bfalse: ff iff: P  Q assert: b rev_implies: P  Q true: True and: P  Q null: null(as) lelt: i  j < k subtype: S  T suptype: suptype(S; T) top: Top uiff: uiff(P;Q) bnot: b so_lambda: x.t[x] nat: uall: [x:A]. B[x] so_apply: x[s1;s2] sq_type: SQType(T) uimplies: b supposing a guard: {T} bool: unit: Unit length: ||as|| so_apply: x[s] it:
Lemmas :  int_seg_properties Id_wf bag_wf int_seg_wf eclass_wf es-E_wf event-ordering+_inc event-ordering+_wf nat_wf subtype_base_sq int_subtype_base le_wf nat_properties ge_wf bool_wf bool_subtype_base iff_imp_equal_bool le_int_wf bfalse_wf iff_functionality_wrt_iff assert_wf false_wf iff_weakening_uiff assert_of_le_int btrue_wf true_wf eq_int_eq_true eq_int_wf assert_of_eq_int pair-eta disjoint-union-type_wf listify_wf assert_of_null length_zero non_neg_length listify_length length_wf_nat null_wf3 top_wf isl_wf eqtt_to_assert outl_wf uiff_transitivity bnot_wf not_wf eqff_to_assert assert_of_bnot pi1_wf_top outr_wf disjoint-union-class_wf pi2_wf not_assert_elim

\mforall{}[Info,S:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].  \mforall{}[A:k:\{m..n  +  1\msupminus{}\}  {}\mrightarrow{}  Type].
\mforall{}[trXs:k:\{m..n  +  1\msupminus{}\}  {}\mrightarrow{}  (Id  {}\mrightarrow{}  A  k  {}\mrightarrow{}  S  {}\mrightarrow{}  S  \mtimes{}  EClass(A  k))].  \mforall{}[init:Id  {}\mrightarrow{}  bag(S)].
    (SM-gen-class-du(init;n;m;trXs)  \mmember{}  Id  {}\mrightarrow{}  disjoint-union-type(listify(A;m;n  +  1))  {}\mrightarrow{}  S  {}\mrightarrow{}  S
                                                                        \mtimes{}  EClass(disjoint-union-type(listify(A;m;n  +  1))))


Date html generated: 2011_10_20-PM-03_40_29
Last ObjectModification: 2011_09_23-PM-06_57_32

Home Index