{ [Info:Type]. [X:EClass(Top)].  (#X = es-interface-accum(n,x.(n + 1);0;X)) }

{ Proof }



Definitions occuring in Statement :  es-interface-accum: es-interface-accum(f;x;X) es-interface-count: #X eclass: EClass(A[eo; e]) nat: uall: [x:A]. B[x] top: Top lambda: x.A[x] add: n + m natural_number: $n universe: Type equal: s = t
Definitions :  es-E-interface: E(X) Id: Id es-interface-predecessors: (X)(e) list_accum: list_accum(x,a.f[x; a];y;l) length: ||as|| eclass-val: X(e) sqequal: s ~ t true: True rev_implies: P  Q iff: P  Q atom: Atom es-base-E: es-base-E(es) token: "$token" record-select: r.x bag: bag(T) dep-isect: Error :dep-isect,  record+: record+ bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) limited-type: LimitedType bfalse: ff btrue: tt decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b apply: f a infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q in-eclass: e  X assert: b bnot: b unit: Unit union: left + right bool: sv-class: Singlevalued(X) grp_car: |g| p-outcome: Outcome prop: void: Void implies: P  Q false: False real: rationals: subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) set: {x:A| B[x]}  top: Top int: pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] nat: es-interface-count: #X es-interface-accum: es-interface-accum(f;x;X) lambda: x.A[x] add: n + m natural_number: $n member: t  T axiom: Ax uall: [x:A]. B[x] isect: x:A. B[x] universe: Type so_lambda: x y.t[x; y] equal: s = t eclass: EClass(A[eo; e]) Auto: Error :Auto,  Try: Error :Try,  CollapseTHEN: Error :CollapseTHEN,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor,  MaAuto: Error :MaAuto,  Complete: Error :Complete,  es-loc: loc(e) list: type List
Lemmas :  rev_implies_wf length_wf1 es-loc_wf nat_wf false_wf not_wf le_wf member_wf top_wf es-interface-accum_wf es-interface-count_wf es-interface-extensionality event-ordering+_wf event-ordering+_inc es-E_wf eclass_wf sv-class_wf bool_wf eqtt_to_assert assert_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf in-eclass_wf es-base-E_wf subtype_rel_self ifthenelse_wf true_wf subtype_rel_wf es-interface-top iff_wf is-interface-count is-interface-accum eclass-val_wf es-interface-count-val es-interface-accum-val length_wf_nat es-interface-predecessors_wf Id_wf es-E-interface_wf list_accum_wf

\mforall{}[Info:Type].  \mforall{}[X:EClass(Top)].    (\#X  =  es-interface-accum(\mlambda{}n,x.(n  +  1);0;X))


Date html generated: 2011_08_16-PM-05_42_13
Last ObjectModification: 2011_06_20-AM-01_30_54

Home Index