{ [Info,T:Type]. [X,Y:EClass(T)].
    X = Y 
    supposing es:EO+(Info). e:E.
                ((((X)' es e) = ((Y)' es e))  ((X es e) = (Y es e))) }

{ Proof }



Definitions occuring in Statement :  es-prior-val: (X)' eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] implies: P  Q apply: f a universe: Type equal: s = t bag: bag(T)
Definitions :  axiom: Ax pair: <a, b> bool: so_apply: x[s] union: left + right or: P  Q guard: {T} l_member: (x  l) filter: filter(P;l) permutation: permutation(T;L1;L2) list: type List quotient: x,y:A//B[x; y] intensional-universe: IType strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) fpf: a:A fp-B[a] es-E-interface: E(X) set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b es-prior-val: (X)' limited-type: LimitedType prop: implies: P  Q uimplies: b supposing a bag: bag(T) subtype: S  T subtype_rel: A r B eq_atom: eq_atom$n(x;y) atom: Atom apply: f a top: Top es-base-E: es-base-E(es) token: "$token" eq_atom: x =a y ifthenelse: if b then t else f fi  record-select: r.x dep-isect: Error :dep-isect,  record+: record+ event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] isect: x:A. B[x] function: x:A  B[x] all: x:A. B[x] uall: [x:A]. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] member: t  T equal: s = t universe: Type es-causl: (e < e') Knd: Knd IdLnk: IdLnk Id: Id rationals: sq_stable: SqStable(P) Auto: Error :Auto,  BHyp: Error :BHyp,  CollapseTHEN: Error :CollapseTHEN,  MaAuto: Error :MaAuto,  void: Void empty-bag: {} eclass-val: X(e) single-bag: {x} false: False bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q es-prior-interface: prior(X) in-eclass: e  X bnot: b int: unit: Unit real: grp_car: |g| nat: natural_number: $n bag-size: bag-size(bs) es-loc: loc(e) exists: x:A. B[x] es-interface-at: X@i so_lambda: x.t[x] tag-by: zT fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B fpf-cap: f(x)?z record: record(x.T[x]) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g squash: T cond-class: [X?Y] eq_knd: a = b fpf-dom: x  dom(f) true: True rev_implies: P  Q iff: P  Q es-locl: (e <loc e') bag-only: only(bs) tactic: Error :tactic,  sq_type: SQType(T) es-le: e loc e'  es-p-le: e p e' es-causle: e c e' es-p-locl: e pe' causal-predecessor: causal-predecessor(es;p) rev_uimplies: rev_uimplies(P;Q) set_car: |p| rng_car: |r| atom: Atom$n l_disjoint: l_disjoint(T;l1;l2) qle: r  s qless: r < s nequal: a  b  T  l_exists: (xL. P[x]) l_all: (xL.P[x]) grp_lt: a < b set_lt: a <p b set_leq: a  b CollapseTHENA: Error :CollapseTHENA,  cand: A c B
Lemmas :  is-prior-interface uiff_wf assert_of_eq_int subtype_base_sq bool_subtype_base assert_elim es-prior-interface-causl bag-only_wf true_wf false_wf es-locl_wf es-prior-interface-equal iff_wf rev_implies_wf sq_stable__assert Id_wf es-loc_wf eclass-val_wf2 assert_functionality_wrt_uiff squash_wf eq_int_wf bag-size_wf nat_wf es-prior-interface_wf1 in-eclass_wf ifthenelse_wf single-bag_wf eclass-val_wf bool_wf assert_wf not_wf bnot_wf assert_of_bnot eqff_to_assert uiff_transitivity eqtt_to_assert es-prior-interface_wf es-interface-subtype_rel2 es-E-interface_wf top_wf empty-bag_wf es-interface-equality-recursion es-causl_wf eclass_wf es-prior-val_wf bag_wf event-ordering+_inc es-E_wf event-ordering+_wf subtype_rel_wf es-interface-top member_wf subtype_rel_self es-base-E_wf intensional-universe_wf permutation_wf

\mforall{}[Info,T:Type].  \mforall{}[X,Y:EClass(T)].
    X  =  Y  supposing  \mforall{}es:EO+(Info).  \mforall{}e:E.    ((((X)'  es  e)  =  ((Y)'  es  e))  {}\mRightarrow{}  ((X  es  e)  =  (Y  es  e)))


Date html generated: 2011_08_16-PM-05_09_55
Last ObjectModification: 2011_06_20-AM-01_12_36

Home Index