{ [Info,A,B:Type]. [X:EClass(A)]. [Y:EClass(B)].
    X;Y
    = eclass-compose2(ys,xs.
                       if (bag-size(ys) = 1)
                       then if (bag-size(xs) = 1)
                            then {<only(xs), only(ys)>}
                            else {}
                            fi 
                       else {}
                       fi ;Y;Prior(X)) 
    supposing Singlevalued(X) }

{ Proof }



Definitions occuring in Statement :  es-interface-pair-prior: X;Y primed-class: Prior(X) eclass-compose2: eclass-compose2(f;X;Y) sv-class: Singlevalued(X) eclass: EClass(A[eo; e]) eq_int: (i = j) ifthenelse: if b then t else f fi  uimplies: b supposing a uall: [x:A]. B[x] lambda: x.A[x] pair: <a, b> product: x:A  B[x] natural_number: $n universe: Type equal: s = t bag-only: only(bs) bag-size: bag-size(bs) single-bag: {x} empty-bag: {}
Definitions :  iff: P  Q es-prior-val: (X)' atom: Atom es-base-E: es-base-E(es) token: "$token" bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) record-select: r.x dep-isect: Error :dep-isect,  record+: record+ bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} decide: case b of inl(x) =s[x] | inr(y) =t[y] eq_bool: p =b q in-eclass: e  X IdLnk: IdLnk Id: Id rationals: append: as @ bs locl: locl(a) Knd: Knd lt_int: i <z j le_int: i z j limited-type: LimitedType bfalse: ff btrue: tt eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b unit: Unit bool: permutation: permutation(T;L1;L2) list: type List apply: f a so_apply: x[s] implies: P  Q union: left + right or: P  Q guard: {T} l_member: (x  l) assert: b quotient: x,y:A//B[x; y] set: {x:A| B[x]}  real: grp_car: |g| int: nat: subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) top: Top bag: bag(T) fpf: a:A fp-B[a] void: Void false: False strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] axiom: Ax primed-class: Prior(X) empty-bag: {} bag-only: only(bs) pair: <a, b> single-bag: {x} natural_number: $n bag-size: bag-size(bs) eq_int: (i = j) ifthenelse: if b then t else f fi  lambda: x.A[x] eclass-compose2: eclass-compose2(f;X;Y) es-interface-pair-prior: X;Y product: x:A  B[x] equal: s = t universe: Type uall: [x:A]. B[x] eclass: EClass(A[eo; e]) uimplies: b supposing a so_lambda: x y.t[x; y] prop: sv-class: Singlevalued(X) member: t  T isect: x:A. B[x] Auto: Error :Auto,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor,  MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  Try: Error :Try,  squash: T eclass-val: X(e) true: True cand: A c B es-E-interface: E(X) rev_implies: P  Q bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) cond-class: [X?Y] eq_knd: a = b fpf-dom: x  dom(f) tactic: Error :tactic,  so_apply: x[s1;s2] pi1: fst(t)
Lemmas :  es-interface-subtype_rel2 rev_implies_wf is-pair-prior iff_weakening_uiff iff_functionality_wrt_iff true_wf eclass-val_wf assert_functionality_wrt_uiff squash_wf primed-class-prior-val nat_wf bag-size_wf eq_int_wf ifthenelse_wf bag_wf eclass-compose2_wf primed-class_wf es-interface-pair-prior_wf es-interface-extensionality single-bag_wf bag-only_wf event-ordering+_wf event-ordering+_inc es-E_wf eclass_wf sv-class_wf empty-bag_wf member_wf subtype_rel_wf es-interface-top permutation_wf bool_wf uiff_transitivity eqtt_to_assert assert_of_eq_int assert_wf not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff bnot_wf le_wf in-eclass_wf false_wf top_wf es-base-E_wf subtype_rel_self es-prior-val_wf iff_wf

\mforall{}[Info,A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].
    X;Y
    =  eclass-compose2(\mlambda{}ys,xs.
                                          if  (bag-size(ys)  =\msubz{}  1)
                                          then  if  (bag-size(xs)  =\msubz{}  1)  then  \{<only(xs),  only(ys)>\}  else  \{\}  fi 
                                          else  \{\}
                                          fi  ;Y;Prior(X)) 
    supposing  Singlevalued(X)


Date html generated: 2011_08_16-PM-05_39_34
Last ObjectModification: 2011_06_20-AM-01_29_31

Home Index