Nuprl Lemma : es-interval-open-interval

[es:EO]. [e,e':E].  [e', e] = (if e' <loc e then [e'] else [] fi  @ (e', e) @ [e]) supposing e' loc e 


Proof not projected




Definitions occuring in Statement :  es-open-interval: (e, e') es-interval: [e, e'] es-bless: e <loc e' es-le: e loc e'  es-E: E event_ordering: EO append: as @ bs ifthenelse: if b then t else f fi  uimplies: b supposing a uall: [x:A]. B[x] cons: [car / cdr] nil: [] list: type List equal: s = t
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a member: t  T all: x:A. B[x] implies: P  Q es-interval: [e, e'] es-open-interval: (e, e') nat: ge: i  j  le: A  B not: A false: False squash: T true: True append: as @ bs ifthenelse: if b then t else f fi  filter: filter(P;l) es-before: before(e) ycomb: Y btrue: tt reduce: reduce(f;k;as) bfalse: ff top: Top subtype: S  T prop: and: P  Q es-le-before: loc(e) guard: {T} l_all: (xL.P[x]) so_apply: x[s] strongwellfounded: SWellFounded(R[x; y]) exists: x:A. B[x] bool: unit: Unit uiff: uiff(P;Q) iff: P  Q or: P  Q cand: A c B rev_implies: P  Q es-le: e loc e'  it: !hyp_hide: x
Lemmas :  es-le_wf es-E_wf event_ordering_wf es-causl-swellfnd nat_properties ge_wf less_than_wf nat_wf le_wf es-causl_wf equal_wf es-first_wf bool_wf eqtt_to_assert uiff_transitivity assert_wf bnot_wf not_wf eqff_to_assert assert_of_bnot filter_append_sq es-le-before_wf2 es-pred_wf top_wf es-ble_wf iff_transitivity iff_weakening_uiff assert-es-ble append_assoc_sq ifthenelse_wf es-bless_wf append_wf squash_wf true_wf not_functionality_wrt_iff es-le-iff es-locl_wf assert-es-bless and_wf btrue_neq_bfalse es-locl-first assert_elim es-le-first es-before_wf3 es-pred-causl es-causl_weakening es-causle_weakening_locl es-le-pred length_wf_nat filter_wf es-before_wf member_wf filter_is_nil l_member_wf member_singleton member-es-before or_functionality_wrt_iff member_append or_wf es-pred-locl es-locl_transitivity1 es-locl_transitivity2 es-le_weakening member-es-le-before es-le_transitivity es-le_weakening_eq

\mforall{}[es:EO].  \mforall{}[e,e':E].
    [e',  e]  =  (if  e'  <loc  e  then  [e']  else  []  fi    @  (e',  e)  @  [e])  supposing  e'  \mleq{}loc  e 


Date html generated: 2012_01_23-PM-12_10_37
Last ObjectModification: 2011_12_13-AM-10_31_59

Home Index