{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [f:E(X)  E(X)].
    [e:E(X)]. (null(prior-f-fixedpoints(e))) supposing x:E(X). f x c x }

{ Proof }



Definitions occuring in Statement :  es-prior-fixedpoints: prior-f-fixedpoints(e) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-causle: e c e' null: null(as) assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] not: A apply: f a function: x:A  B[x] universe: Type
Definitions :  list: type List null: null(as) es-interface-prior-vals: X(e) strong-subtype: strong-subtype(A;B) l_member: (x  l) es-prior-fixedpoints: prior-f-fixedpoints(e) less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) void: Void false: False implies: P  Q not: A infix_ap: x f y es-causl: (e < e') or: P  Q set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b prop: es-causle: e c e' uimplies: b supposing a union: left + right es-E-interface: E(X) subtype: S  T subtype_rel: A r B atom: Atom apply: f a token: "$token" ifthenelse: if b then t else f fi  record-select: r.x top: Top event_ordering: EO es-E: E lambda: x.A[x] dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] universe: Type member: t  T event-ordering+: EO+(Info) equal: s = t tactic: Error :tactic,  sq_stable: SqStable(P) so_apply: x[s] guard: {T} fpf: a:A fp-B[a] le: A  B ge: i  j  exists: x:A. B[x] es-fix: f**(e) IdLnk: IdLnk Id: Id append: as @ bs locl: locl(a) Knd: Knd squash: T uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g limited-type: LimitedType so_lambda: x.t[x] tl: tl(l) hd: hd(l) cons: [car / cdr] pair: <a, b> iff: P  Q bool: true: True nil: []
Lemmas :  l_member_wf es-fix_wf2 nil_member true_wf property-from-l_member sq_stable_wf sq_stable__equal member_null member-es-fix-prior-fixedpoints subtype_rel_wf uiff_inversion member_wf top_wf es-E-interface_wf es-E_wf es-prior-fixedpoints_wf null_wf3 assert_wf false_wf not_wf pos_length2 es-E-interface-subtype_rel event-ordering+_inc subtype_rel_self es-causle_wf event-ordering+_wf eclass_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:E(X)  {}\mrightarrow{}  E(X)].
    \mforall{}[e:E(X)].  (\mneg{}\muparrow{}null(prior-f-fixedpoints(e)))  supposing  \mforall{}x:E(X).  f  x  c\mleq{}  x


Date html generated: 2011_08_16-PM-05_44_21
Last ObjectModification: 2011_06_20-AM-01_32_09

Home Index