{ 
[Info,A,B,C:Type]. 
[f:A 
 B 
 C]. 
[X:EClass(A)]. 
[Y:EClass(B)].
  
[es:EO+(Info)]. 
[e:E]. 
[v:C].
    uiff(v 
 
a,b.lifting2(f;a;b)|X;Y|(e);
a:A
                                            
b:B
                                             ((a 
 X(e) 
 b 
 Y(e))
                                             
 (v = (f a b)))) }
{ Proof }
Definitions occuring in Statement : 
lifting2: lifting2(f;abag;bbag), 
simple-comb2:
x,y.F[x; y]|X;Y|, 
classrel: v 
 X(e), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-E: E, 
uiff: uiff(P;Q), 
uall:
[x:A]. B[x], 
exists:
x:A. B[x], 
squash:
T, 
and: P 
 Q, 
apply: f a, 
function: x:A 
 B[x], 
universe: Type, 
equal: s = t
Lemmas : 
simple-comb_wf, 
uiff_wf, 
true_wf, 
bag_qinc, 
l_member_wf, 
bag-combine_wf, 
pos_length2, 
bag-member-combine, 
single-bag_wf, 
bag-member-single, 
rev_implies_wf, 
iff_wf, 
permutation_wf, 
intensional-universe_wf, 
subtype_rel_self, 
es-base-E_wf, 
int_seg_properties, 
es-interface-subtype_rel2, 
decidable__equal_int, 
int_subtype_base, 
false_wf, 
not_wf, 
le_wf, 
select_wf, 
es-E_wf, 
event-ordering+_wf, 
eclass_wf, 
event-ordering+_inc, 
int_seg_wf, 
length_wf_nat, 
top_wf, 
length_wf1, 
non_neg_length, 
length_cons, 
length_nil, 
member_wf, 
nat_wf, 
simple-comb-classrel, 
subtype_rel_wf, 
es-interface-top, 
subtype_base_sq, 
bag_wf, 
lifting2_wf, 
bag-member_wf, 
squash_wf, 
simple-comb2_wf, 
classrel_wf
\mforall{}[Info,A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
\mforall{}[v:C].
    uiff(v  \mmember{}  \mlambda{}a,b.lifting2(f;a;b)|X;Y|(e);\mdownarrow{}\mexists{}a:A.  \mexists{}b:B.  ((a  \mmember{}  X(e)  \mwedge{}  b  \mmember{}  Y(e))  \mwedge{}  (v  =  (f  a  b))))
Date html generated:
2011_08_17-PM-06_20_49
Last ObjectModification:
2011_07_24-AM-00_47_56
Home
Index