Nuprl Lemma : btr_Leaf-val_wf

[v:binary-tree()]. btr_Leaf-val(v) ∈ ℤ supposing ↑btr_Leaf?(v)


Proof




Definitions occuring in Statement :  btr_Leaf-val: btr_Leaf-val(v) btr_Leaf?: btr_Leaf?(v) binary-tree: binary-tree() assert: b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T int:
Lemmas :  binary-tree-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom assert_wf btr_Leaf?_wf binary-tree_wf
\mforall{}[v:binary-tree()].  btr\_Leaf-val(v)  \mmember{}  \mBbbZ{}  supposing  \muparrow{}btr\_Leaf?(v)



Date html generated: 2015_07_17-AM-07_52_03
Last ObjectModification: 2015_01_27-AM-09_34_44

Home Index