Nuprl Lemma : btr_Leaf-val_wf
∀[v:binary-tree()]. btr_Leaf-val(v) ∈ ℤ supposing ↑btr_Leaf?(v)
Proof
Definitions occuring in Statement : 
btr_Leaf-val: btr_Leaf-val(v)
, 
btr_Leaf?: btr_Leaf?(v)
, 
binary-tree: binary-tree()
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Lemmas : 
binary-tree-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
assert_wf, 
btr_Leaf?_wf, 
binary-tree_wf
\mforall{}[v:binary-tree()].  btr\_Leaf-val(v)  \mmember{}  \mBbbZ{}  supposing  \muparrow{}btr\_Leaf?(v)
Date html generated:
2015_07_17-AM-07_52_03
Last ObjectModification:
2015_01_27-AM-09_34_44
Home
Index