Nuprl Lemma : btr_Leaf-val_wf
∀[v:binary-tree()]. btr_Leaf-val(v) ∈ ℤ supposing ↑btr_Leaf?(v)
Proof
Definitions occuring in Statement :
btr_Leaf-val: btr_Leaf-val(v)
,
btr_Leaf?: btr_Leaf?(v)
,
binary-tree: binary-tree()
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
int: ℤ
Lemmas :
binary-tree-ext,
eq_atom_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_atom,
subtype_base_sq,
atom_subtype_base,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_atom,
assert_wf,
btr_Leaf?_wf,
binary-tree_wf
\mforall{}[v:binary-tree()]. btr\_Leaf-val(v) \mmember{} \mBbbZ{} supposing \muparrow{}btr\_Leaf?(v)
Date html generated:
2015_07_17-AM-07_52_03
Last ObjectModification:
2015_01_27-AM-09_34_44
Home
Index